
Chapter 18: ADS and ADO.NET 1

Chapter 18
ADS and ADO.NET

Note: This chapter accompanies the book Advantage Database Server: A Developer's
Guide, 2nd Edition, by Cary Jensen and Loy Anderson (2010, ISBN: 1453769978). For
information on this book and on purchasing this book in various formats (print, e-book,
etc), visit: http://www.JensenDataSystems.com/ADSBook10

Things change, and in the computer software industry things change fast. But one
thing that hasn't changed is your need to access data. It's the way you access data that has
changed.

One of the more recent data access mechanisms, at least for now, is ADO.NET, the
data access layer of the .NET FCL (framework class library). This technology is
significant, and if you are not already using it, you may be some day in the future. And if
you do, you'll be glad to find that Advantage is there with you.

This chapter provides you with an introduction to data access using the .NET FCL,
specifically ADO.NET. It begins with an overview of ADO.NET and the Advantage
.NET Data Provider. It continues with a look at accessing your Advantage data using
Advantage and ADO.NET.

In keeping with the language-agnostic nature of Advantage, data access is
demonstrated in this chapter using C#, one of the newer object-oriented languages. Keep
in mind, however, that .NET classes are .NET classes, regardless of which .NET-enabled
language you use. Consequently, all the data access techniques demonstrated in this
chapter can be used from any .NET language, including VB for .NET, Delphi Prism, and
Visual J# for .NET, to name a few.

Note: Delphi 2005 through 2007 also supported .NET development, though this capability
has since been deprecated, with Delphi Prism providing the replacement technology. The
Advantage .NET Data Provider for Advantage 10 does not support these older versions of
Delphi for .NET. If you are supporting a Delphi for .NET project in Advantage, you can use
the Advantage .NET Provider for Advantage 9.1. Since Advantage clients tend to be
forward compatible, you can use this provider with Advantage 10.

There is an additional data access framework in .NET that builds upon ADO.NET.
This framework, which is often referred to as the Entity Framework, uses a layer of
abstraction between your applications and the lower-level .NET components. While this
chapter provides you with detail coverage of these lower-level classes, you will find an in-

2 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

depth look at the Entity Framework in Chapter 19, Advantage and the .NET Entity
Framework.

Advantage and ADO.NET
ADO.NET is the common name for the classes and interfaces of the System.Data

second-level namespace of the FCL. Conceptually, ADO.NET can be divided into two
distinct parts: the data access layer and the data storage system.

The classes associated with the data storage system are stand-alone classes that you
can employ in any ADO.NET application. These classes include DataColumn,
DataRelation, DataRow, DataSet, DataTable, and DataView. Of these, the most central
class is DataSet.

Unlike the storage mechanism, which is defined around classes, the data access layer is
formally defined using interfaces (abstract application programming interface definitions),
and in ADO.NET 2.0 and later, abstract base classes. Concrete classes—that is, classes
that can be instantiated—implement these interfaces. It is these concrete implementations
that you use to access your data. Such classes are referred to generically as .NET data
providers.

There are five .NET data providers native to ADO.NET, which is also to say that they
are installed along with the FCL. These are associated with the System.Data.SqlClient,
System.Data.OleDb, System.Data.Odbc, System.Data.SqlServerCE, and
System.Data.OracleClient third-level namespaces.

As is the case with ADO and OLE DB providers, database vendors are permitted and
encouraged to create their own data access classes that implement these same interfaces
(and in ADO.NET 2.0, extend the abstract base classes). Advantage calls their
implementation the Advantage .NET Data Provider, and it can be found in the
Advantage.Data.Provider namespace.

The primary responsibility of the Advantage .NET Data Provider classes is the same as
that of the native implementations⎯supply data to the data storage system, and in
particular, provide access to data through SQL queries.

The second, and obviously crucial, role of .NET data providers is to permit direct
manipulation of data through SQL. This, too, is deftly handled by the Advantage .NET
Data Provider.

As is the case with all data access mechanisms described in this part of this book, the
following discussion of Advantage programming with ADO.NET touches on just a few of
the available techniques, particularly those that apply to Advantage. Unlike some of the
other data access mechanisms covered in this part of this book, the native .NET classes
provide a significant amount of standard database functionality, such as filtering, sorting,
and seeking. Consequently, these topics are not Advantage specific, and are not covered
in this chapter. For a comprehensive discussion of ADO.NET programming, you may
want to pick up a book on the subject.

Chapter 18: ADS and ADO.NET 3

Another important point about the examples provided in this chapter is that they are
provided through a Windows form application. This might seem a bit odd, considering
that the vast majority of applications written using the .NET framework are Web forms
(or Web service applications), those used to create applications for the Web. (Though
Silverlight-based applications are increasing in popularity.)

There is a good reason for the use of a Windows form application in these examples.
Windows forms applications are more demanding, database-wise, than ASP.NET
applications, such as Web forms applications. In most Web forms applications, a
DataReader is used to read data, which is then bound to one or more controls on a Web
form. In most cases, DataSets and DataTables are not used. These are, however, essential
parts of ADO.NET.

There is also a second reason. Creating an ASP.NET Web forms application is more
involved than creating a Windows forms application. You need a Web server and you
need to configure it to run .NET.

In the end, we opted for focusing on how to access Advantage using .NET, rather than
complicate the process with ASP.NET-related issues. Consequently, the Windows forms
application described here is designed to be similar to the Delphi, Java, Visual Basic, and
Visual FoxPro applications described in other chapters in this part.

The Right Provider for Visual Studio
There is little doubt that .NET will be an important framework for many years to come.

As a result, it is not surprising that the Advantage team has committed itself to providing
Advantage developers with an exceptional .NET experience.

To put this another way, the Advantage team has provided specific customizations that
integrate Advantage beautifully with Visual Studio. This includes the availability of
custom component editors in the Visual Studio IDE (integrated development
environment), support for ADO.NET 2.0, as well as access to your database metadata
from within the Visual Studio Server Explorer. Each of these points is discussed in the
following sections.

Visual Studio Component Editors
Advantage provides exceptional design time support in Visual Studio. For example, if

you choose to configure your data access at design time, Advantage gives you the
automated tools you need to configure your components. When you drop an
AdsDataAdapter onto a design surface, Advantage launches the Advantage Data Adapter
Configuration Wizard. You can also manually invoke this wizard by right-clicking an
AdsDataAdapter and selecting Configure Data Adapter.

This wizard, shown in Figure 18-1, provides you with support for both building your
connection string and creating the SQL statements that you associate with the data
adapter's DeleteCommand, InsertCommand, SelectCommand, and UpdateCommand

4 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

properties. In many cases, you only need to add the final code to open your
AdsConnection and fill your datasets.

Figure 18-1 The Advantage Data Adapter Configuration Wizard

Likewise, if you right-click the AdsDataAdapter and select Generate Dataset, a
Component Editor appears that helps you configure a DataSet to use the result set
generated by the AdsDataAdapter.

Finally, the AdsDataAdapter class also provides you with a special, integrated viewer
that permits you to inspect your data directly within Visual Studio. Simply right-click a
configured AdsDataAdapter and select Preview Data to access this feature.

If instead of using design-time configuration, you can choose to create and configure
your data access components at runtime (which you will want to do if your applications
need to be scalable) and still use the code generated by the Advantage Data Adapter
Configuration Wizard. Simply place an AdsDataAdapter into a form and use the wizard to
configure the adapter and its AdsCommand. Then, copy the generated code and paste it
into the appropriate location of your runtime code project.

Full ADO.NET 2.0 Support
Advantage is one of the .NET data providers to fully support the ADO.NET 2.0

framework, which represented a major departure from the previous architecture employed
in ADO.NET 1.1 and earlier. To begin with, the primary Advantage .NET data provider
classes descend from the ADO.NET base classes, including DbConnection, DbCommand,

Chapter 18: ADS and ADO.NET 5

DbDataAdapter, and so forth. Furthermore, Advantage provides an implementation of the
DbFactory class, AdsFactory, which you can use to write more portable code.

Note: The core architecture of ADO.NET has not changed since ADO.NET 2.0. What has
changed, in .NET 3.0, 3.5, and the latest, .NET 4.0, is the addition of language integrated
query (LINQ) capabilities, which introduces an additional layer of abstraction between
your data providers and your application. LINQ, and Entity Framework in particular, are
covered in Chapter 19, Advantage and the .NET Entity Framework.

Additional ADO.NET features supported by Advantage include support for ambient
transactions through the System.Transaction.TransactionScope class. Using a
TransactionScope, all subsequent connections to Advantage through the Advantage .NET
Database Provider enlist the services of the TransactionScope, which you can then use to
commit or roll back updates to your data.

Another new class in the Advantage .NET 2.0 Data Provider is the
AdsConnectionStringBuilder. This class provides your code with help building a
connection string by exposing properties that map to the connection string parameters.
After setting its properties, you can read the correctly formatted connection string from
the AdsConnectionStringBuilder's ConnectionString property.

You can also assign a valid connection string to the ConnectionString property, and
then read the individual connection parameters from the AdsConnectionStringBuilder's
properties.

In a similar vein, Advantage provides a class that helps you create and use the various
classes of ADO.NET without having to create these classes directly. This class, the
AdsHelper, can be used to create AdsCommands, execute queries, and fill Datasets. This
class is available in both C# and VB for .NET source code that is installed in the
Advantage .NET Data Provider installation directory.

You can add this source file directly to your projects, or you can compile a class
library containing this class (which you then add to your References folder).

Note: For information on using the AdsHelper class, see the document AdsHelper.pdf,
which is located in the installation directory of the Advantage Data Provider.

While all of this is very nice, it’s the Advantage Extended reader that we really love.
This class, AdsExtendedReader, provides all of the basic functionality described by the
IDataReader interface. But it does so much more.

While all data readers permit you to read data and navigate forward in a result set, the
AdsExtendedReader adds support for server-side cursors. By leveraging the unique
character of Advantage's architecture, the AdsExtendedReader provides you with read and
write capabilities, bi-directional navigation; and server-side, optimized seeks, scopes, and
filters. In our ASP.NET Web forms and Web services applications, we have found these

6 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

capabilities to greatly simplify the process of working with data. We cannot imagine
ADO.NET without the extended reader, but that is the world in which other .NET
developers live.

Advanced Visual Studio Integration
With Visual Studio 2005 and later, Advantage's integration goes even further. You can

install Advantage data connections into the Visual Studio Server Explorer. With
Advantage data connection added to the Server Explorer, you can easily view your
database's metadata from within Visual Studio, including the names of tables, views, and
stored procedures, as well as field and parameters names and data types.

Figure 18-2 shows a data connection to the DemoDictionary data dictionary in the
Server Explorer found in Visual Studio 2010.

Figure 18-2: You can access your Advantage data from the Visual Studio 2005
Server Explorer

A Note About the Examples
The classes of the Advantage .NET Data Provider are instantiated in these examples at

runtime rather than being placed and configured at design time. While Visual Studio
permits you to place and configure data access components such as AdsConnection,
AdsDataAdapter, and DataSet at design time, we do not recommend this technique.

Some developers disagree with our approach. These developers correctly point out that
the code generated by IDEs when you place and configure your data access components at
design time saves you a lot of time coding and simplifies the maintenance of your
applications.

Chapter 18: ADS and ADO.NET 7

Our position, and one that is shared by many in the .NET database community, is that
when you use design-time placement and configuration, you have little control over the
generated code, and the results may scale poorly. But whether or not you agree with this
approach, the examples in this chapter do a good job of demonstrating how to create,
configure, and control ADO.NET-related classes programmatically.

Code Download: The examples provided in this chapter can be found in the C# project
CS_ADONET_2010 and CS_ADONET_2008 available with this book's code download
(see Appendix A). These projects were written in Visual Studio 2010 and Visual Studio
2008, respectively. If you are working with an older version of Visual Studio, project
format incompatibilities will prevent you from compiling these projects, though you could
still easily reuse much, if not all, of the code.

Note: Visual Studio 2008-2010 can compile .NET projects as either 32-bit or 64-bit
assemblies. By default, your project's Platform target options are set "any CPU," which
will create 32-bit applications if your operating system is 32-bit and 64-bit applications if
your operating system is 64-bit. If you are using a 64-bit Windows operating system, and
this application throws an exception when you attempt to load the Advantage Data
Provider, you may need to adjust this project's platform to x86, or see the Advantage
Knowledgebase entry that describes how to work around a bug in .NET to permit your
application to load Advantage's 64-bit client.

The main form of the CS_ADONET C# project used in the examples in this chapter is
shown in Figure 18-3.

8 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Figure 18-3: The CS_ADONET project in Visual Studio 2010

Note that before you can use Advantage with Visual Studio for .NET, you must add a
reference to the Advantage.Data.Provider assembly. To do this in Visual Studio 2010, use
the following steps:

1. From a Visual Studio .NET project, right-click the References folder in the Solution
Explorer.

2. Select Add Reference.

3. Use the displayed dialog box to select the Advantage.Data.Provider assembly from
the .NET tab.

4. Click OK when you are done.

Note: If you place your components into your projects at runtime from the Tool Palette in
Visual Studio, Visual Studio will add the Advantage.Data.Provider assembly to the
References folder of you project for you. However, you must first manually add your
Advantage components to the Tool Palette. To do this in Visual Studio 2010, select Tools
| Choose Toolbar Items. Once the resulting dialog box is displayed (which often takes a
bit of time), place a checkmark next to the AdsCommand, AdsCommandBuilder,
AdsConnection, and AdsDataAdapter components. Click OK when you are done.

Chapter 18: ADS and ADO.NET 9

Performing Basic Tasks with ADS and ADO.NET

This section describes some of the more common tasks that you can perform with the
Advantage .NET Data Provider. These include connecting to a data dictionary, executing
a query, using a parameterized query, retrieving and editing data, and executing a stored
procedure.

Connecting to Data
You connect to a data dictionary or a directory in which free tables are located using

an AdsConnection object found in the Advantage.Data.Provider namespace. At a
minimum, you must provide the AdsConnection object with sufficient information to
locate your data and configure how the data should be accessed. This is done using the
ConnectionString property. This property accepts name/value pairs using the parameters
listed in Table 18-1. If you use more than one name/value pair, separate them with
semicolons.
Parameter Description
CharType Set to the character set type for DBF files. Valid values are

ANSI and OEM. The default value is ANSI.
CommandTimeout The number of seconds after which Advantage will cancel a

long running query. The default is 30 seconds. (This setting
was used in Chapter 9, Using Notifications, to permit a query
that waits indefinitely for a notification)

CommType The communication protocol to use to connect to ADS.
Under Windows and Linux, the default is UDP_IP. For
Novell Netware, the default is IPX. To use TCP/IP, set
CommType to TCP_IP.

Compression Set to ALWAYS, INTERNET, NEVER, or empty. If left
empty (the default), the ADS.INI file will control the
compression setting. This parameter is not used by ALS.

Connection Lifetime The number of seconds after which a connection will be
destroyed after being returned to the connection pool. The
default is 0.

Connection Reset When set to True, AdsResetConnection is called each time
the connection is returned to the connection pool, there by
closing all open tables, indexes, and queries, unloading
loaded stored procedures, and rolling back incomplete
transactions. The default value is True.

Data Source The path to your free tables or data dictionary. If you are
using a data dictionary, you must include the data dictionary
filename in this path. It is recommended that this path be a
UNC path. Data Source is a required parameter.

DbfsUseNulls Set to TRUE to return empty fields from DBF files as NULL
values. If set to FALSE, empty fields are returned as empty
data values. The default is FALSE.

10 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

EncryptionPassword Set to an optional password to use for accessing encrypted

free tables. This parameter is ignored for data dictionary
connections.

Enlist Set to TRUE to enlist the connection in the thread’s current
transaction context (created by TransactionScope) when the
connection is opened. The default is TRUE. This property is
only applicable if you are using the .NET Framework version
2.0 or later.

FilterOptions When FilterOptions is set to
IGNORE_WHEN_COUNTING, the value returned by the
AdsExtendedReader's GetRecordCount method may not
reflect the number of records in a currently applied filter, but
will do so when FilterOptions is set to
REPECT_WHEN_COUNTING. The default is
IGNORE_WHEN_COUNTING.

IncrementUserCount Set to TRUE to increment the user count when the
connection is made. Set to FALSE to make a connection
without incrementing the user count. The default is FALSE.

Initial Catalog Optional name of a data dictionary if the data dictionary is
not specified in the Data Source parameter.

LockMode Set to PROPRIETARY or COMPATIBLE to define the
locking mechanism used for DBF tables. Use COMPATIBLE
when your connection must share data with non-ADS
applications. The default is PROPRIETARY.

Max Pool Size The maximum number of connections to maintain in the
connection pool. The default is 100.

Min Pool Size The minimum number of connections to maintain in the
connection pool. The default is 0.

Password When connecting to a data dictionary that requires logins, set
to the user's password.

Pooling Set to TRUE to enable connection pooling. Set to FALSE to
disable it. The default is TRUE.

ReadOnly Set to TRUE to open tables readonly. Set to FALSE to open
tables as editable (read-write). This setting applies to all
CommandType values. The default is FALSE.

SecurityMode Set to CHECKRIGHTS to observe the user's network access
rights before opening files. Set to IGNORERIGHTS to access
files regardless of the user's network rights. The default is
CHECKRIGHTS. This property applies only to free table
connections.

ServerType Set to the type of ADS server you want to connect to. Use
LOCAL, REMOTE, or AIS (Internet). To attempt to connect
to two or more types, separate the server types using a
vertical bar (|). This is demonstrated in the ConnectionString

Chapter 18: ADS and ADO.NET 11

shown later in this chapter.
Shared Set to TRUE to open tables shared. Set to FALSE to open

tables exclusively. This setting only applies to
CommandType.TableDirect. The default is TRUE.

ShowDeleted Set to TRUE to include deleted records in DBF files. Set to
FALSE to suppress deleted records. The default is FALSE.

StoredProcedure
Connection

Set to TRUE if connecting from within a stored procedure.
When set to TRUE, the connection does not increment the
user count. The default is FALSE.

TableType Set to ADT, VFP, CDX, or NTX to define the default table
type. The default is ADT. This parameter is ignored for data
dictionary connections.

TrimTrailingSpaces Set to TRUE to trim trailing spaces from character fields. Set
to FALSE to preserve trailing spaces. The default is FALSE.

User ID If connecting to a data dictionary that requires logins, set to
the user's user name.

UnicodeCollation Provides the collation to use for Unicode fields, comparisons,
etc. For example: UnicodeCollation=de_DE. To retrieve all
of the supported names:
SELECT x.Name FROM
 (execute procedure sp_getcollations(NULL)) x
 WHERE x.UnicodeLocale IS NULL;

Table 18-1: The Advantage Data Provider Connection String Parameters

Note: The parameter values for CharType, LockMode, SecurityMode, ServerType, and
TableType parameters also have longer name versions. For example the value
ADS_ANSI can be used instead of ANSI. The longer names are recognized for
compatibility with OLE DB (ADO) connection strings. You can find the longer versions of
these values in Table 22-1 of Chapter 22, Advantage and MDAC, OLE DB, ADO, and
Visual Basic, or in the Advantage help.

With the Advantage .NET Data Provider, the connection string property values can be
enclosed in either single quotes or double quotes, if necessary. For example, if the
password contains a semicolon (the connection string parameter delimiter), it would be
necessary to enclose it in single quotes or double quotes.

For any of the optional connection string parameters that you fail to provide, the
Advantage .NET Data Provider will automatically employ the default parameters.

Because the AdsConnection object that is used by this project must be used by a
number of methods, the AdsConnection variable and several other variables that must be
repeatedly referenced are declared public members of the Form class. The following is
this declaration:

public AdsConnection connection;
public AdsCommand command;

12 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

public AdsCommand paramCommand;
public AdsDataReader dataReader;

The data source location of the data dictionary is also declared as a constant member of
this class. This constant refers to a share named “share,” on a server named “server,” as
shown in the following declaration:

private const String DataPath = "\\\\server\\share\\" +
 "adsbook\\DemoDictionary.add;";

This connection, named AdsConnection, is created, configured, and opened from the
InitializeDataComponents method of the form, along with several other objects.
InitializeDataComponents is called from the Form's constructor. The relevant portion of
this custom private method is shown in the following code:

private void InitializeDataComponents() {
 connection = new AdsConnection();
 connection.ConnectionString = "Data Source=" + DataPath +
 ";user ID=adsuser;password=password;" +
 "ServerType= LOCAL | REMOTE;TrimTrailingSpaces=True";
 connection.Open();
 command = new AdsCommand();
 command = connection.CreateCommand();
 //additional statements follow

Note: If you have difficulty connecting, it might be because you have other client
applications, such as the Advantage Data Architect, connected using a local connection.
Ensure that all clients on the same machine use the same type of connection.

Executing a Query
You execute a query that returns a result set using an AdsCommand. There are

numerous overloaded methods for doing this. The following code segment demonstrates
one of these, where a query string and an open connection are passed as parameters to an
AdsDataAdapter's constructor. Within this constructor, the query string is assigned to an
internally created AdsCommand object that is associated with the SelectCommand
property of the AdsDataAdapter, which performs the query execution. The Fill method is
then invoked on this AdsDataAdapter, which causes the result set to be loaded into a
DataTable of a DataSet.

This DataTable is then used to display the resulting data in a DataGridView, as shown
in Figure 18-4. The following code demonstrates the execution of a query entered by the
user into the TextBox named selectText. This method is associated with the Execute
SELECT button which is shown earlier in Figure 18-3:

private void executeSELECTBtn_Click(object sender,
 System.EventArgs e) {
 IDataAdapter adapter ;
 adapter = new AdsDataAdapter(selectText.Text, connection);
 DataSet ds = new DataSet();

Chapter 18: ADS and ADO.NET 13

 adapter.Fill(ds);
 DataTable dt = ds.Tables[0];
 dataGridView1.DataSource = dt;
}

Figure 18-4: The results of a SELECT query displayed in a DataGridView

Notice that the AdsDataAdapter that is created is assigned to a variable of type
IDataAdapter. IDataAdapter is the interface that all data adapters implement. While we
could have just as well assigned this object to a variable of type AdsDataAdapter,
assigning it to an interface variable makes our code more portable, since any
IDataAdapter implementing class can be assigned to this variable. This technique is used
in this chapter whenever no Advantage .NET Data Provider functionality is specifically
needed. When we need a feature specific to an AdsDataAdapter, our variable is of that
class type.

If you need to execute a query that does not return a result set, call the
ExecuteNonQuery method of an AdsCommand object. The use of an AdsCommand
object to execute a query that does not return a result set is demonstrated later in this
chapter.

Using a Parameterized Query
Parameterized queries are defined using an AdsCommand object. Before you can

invoke a parameterized query, you must create one AdsParameter object for each of the

14 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

query's parameters. You can create an AdsParameter instance by calling the Add method
of the AdsCommand object's Parameters property.

The definition of a parameterized query, including the creation of a parameter, is
shown in the following code segment, which is part of the private
InitializeDataComponents method shown earlier:

paramCommand = new AdsCommand("SELECT * FROM INVOICE " +
 "WHERE [Customer ID] = ?", connection);
paramCommand.Parameters.Add(1, typeof(Int32));

Before you can execute an AdsCommand that contains a parameterized query, you
must bind data to each of its parameters. This is shown in the following method, which is
called by the Show Invoices button shown in Figure 18-3:

private void doParamQuery_Click(object sender,
 System.EventArgs e) {
 IDataAdapter dataAdapter;
 DataSet ds = new DataSet();
 DataTable dt;
 if (paramText.Text.Equals("")) {
 MessageBox.Show(this,
 "You must supply a customer ID");
 return;
 }
 paramCommand.Parameters[0].Value =
 Int32.Parse(paramText.Text);
 dataAdapter = new AdsDataAdapter(paramCommand);
 dataAdapter.Fill(ds);
 dt = ds.Tables[0];
 if (dt.Rows.Count == 0)
 {
 MessageBox.Show(this,
 "No invoices for customer ID");
 return;
 }
 dataGridView1.DataSource = dt;
}

As you can see from this code, after verifying that a value has been entered into the
Customer ID field, the entered data is assigned to the Value property of the AdsParameter.
The AdsCommand object that holds the parameter is passed as an argument to an
AdsDataAdapter, which then executes the query and assigns the result set to a DataTable
(using the Fill method). Note that it was not necessary to pass a connection object to the
AdsDataAdapter constructor, since the AdsCommand object itself was constructed based
on a connection.

This is actually a classic example of how parameterized queries are used. Specifically,
the query text is defined only once, but can be executed repeatedly. And by changing only
the value of the parameter, a different result set can be returned upon each execution.

Chapter 18: ADS and ADO.NET 15

Reading and Writing Data

ADO.NET supports three mechanisms for reading data obtained through a SQL
SELECT query. Which mechanism you use depends on how much data you are reading,
and what you plan to do with it.

In the simplest case, if you are reading a single value from a table, you can call the
ExecuteScalar method of an AdsCommand.

The remaining two mechanisms permit you to read multiple fields and multiple
records. If you need to be able to refer to multiple rows of data at the same time, you will
likely load the data through an AdsDataAdapter into a DataTable. This approach is
demonstrated earlier in this chapter in the section on executing a query. In that example, a
DataTable is populated and its contents displayed in a DataGridView.

The third mechanism is to use a class that implements the IDataReader interface, and
the Advantage .NET Data Provider offers two classes that implement that interface.

The AdsDataReader is a typical ADO.NET data reader implementation. Like other
data readers, it provides a forward-only, readonly cursor to a result set. After obtaining an
AdsDataReader by calling the ExecuteReader method of an AdsCommand, you call the
Read method. If Read returns the value True, the AdsDataReader points to the first record
in the result set, after which you call any of the available Get methods, such as GetString,
GetBoolean, or GetDate, to read data from that record.

If there are additional records in the result set, calling Read advances the data reader to
the next record. Read returns False when there are no remaining records in the result set
referred to by the data reader.

The following code segment demonstrates how to read data using an AdsDataReader.
This code is associated with the event handler assigned to the Get Address button shown
in Figure 18-3:

private void getAddressBtn_Click(object sender,
 System.EventArgs e)
{
 AdsCommand getCustCommand;
 AdsDataReader dataReader;
 String custNo;

 custNo = custNoText.Text;

 if (custNo.Equals(""))
 {
 MessageBox.Show(this, "You must supply a customer ID");
 return;
 }

 getCustCommand = new AdsCommand(
 "SELECT * FROM CUSTOMER WHERE [Customer ID] = ?",
 connection);
 getCustCommand.Parameters.Add(1, typeof(Int32));
 getCustCommand.Parameters[0].Value =
 Int32.Parse(custNo);

16 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 dataReader = getCustCommand.ExecuteReader();
 try
 {
 if (dataReader.Read())
 {
 oldAddressText.Text =
 dataReader.GetString
 (dataReader.GetOrdinal("Address"));
 }
 else
 {
 MessageBox.Show(this, "Customer " + custNo +
 " not found");
 }
 }
 finally
 {
 dataReader.Close();
 }
}

Most ADO.NET developers write data using SQL queries. These may be invoked
directly through an IDbCommand object, or they can be invoked through a properly
configured IDbDataAdapter.

As mentioned earlier in this section, Advantage developers have an additional tool for
writing data, the AdsExtendedReader. The AdsExtendedReader supports both read and
write operations on a live cursor returned by a SQL SELECT statement or from a table
opened directly. (Opening a table directly, by setting the AdsCommand's CommandType
to TableDirect, permits you to open a table exclusively, so long as the shared=false
name/value pair appears in the command's connection string.)

Since the AdsExtendedReader is unique to Advantage, and offers editing capabilities
that are unique in the world of ADO.NET, the following example demonstrates how to
write to a table using an AdsExtendedReader. For information on writing data using the
Update method of a data adapter, refer to the .NET framework documentation.

Actually, using an AdsExtendedReader is almost as simple as using an
AdsDataReader. The primary difference is that the AdsExtendedReader has many more
methods than the typical data reader. After calling ExecuteExtendedReader, which
executes the associated SQL SELECT statement, you can insert records, delete records,
read fields, write to fields, set a range, apply a filter, perform a seek, empty the table, or
run almost any other operation that you would expect from a server-side cursor.

The following code demonstrates a simple write operation using an
AdsExtendedReader. Like the preceding example, an AdsExtendedReader is used to
retrieve a single record from the Customer table. Once retrieved, the selected customer's
address is changed, and the update is written to the underlying table. This code is
associated with the event handler assigned to the Set Address button shown in Figure 18-
3.

Chapter 18: ADS and ADO.NET 17

private void setAddressBtn_Click(object sender,
 System.EventArgs e)
{
 AdsCommand getCustCommand;
 AdsExtendedReader extendedReader;
 String custNo;

 custNo = custNoText.Text;

 if (custNo.Equals(""))
 {
 MessageBox.Show(this, "You must supply a customer ID");
 return;
 }

 getCustCommand = new AdsCommand(
 "SELECT * FROM CUSTOMER WHERE [Customer ID] = ?",
 connection);
 getCustCommand.Parameters.Add(1, typeof(Int32));
 getCustCommand.Parameters[0].Value =
 Int32.Parse(custNo);

 extendedReader = getCustCommand.ExecuteExtendedReader();
 try
 {
 if (extendedReader.Read())
 {
 extendedReader.SetString(
 extendedReader.GetOrdinal("Address"),
 newAddressText.Text);
 extendedReader.WriteRecord();
 }
 else
 {
 MessageBox.Show(this, "Customer " + custNo +
 " not found");
 }
 }
 finally
 {
 extendedReader.Close();
 }
}

Note: Whether you use an AdsDataReader or an AdsExtendedReader, it is very important
to call the data reader's Close method when you are done with it. You cannot use the
AdsCommand object from which you created the data reader for any other queries until
the data reader it returned has been closed. This is why the preceding examples have
included the call to Close in a finally clause.

18 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Calling a Stored Procedure

Calling a stored procedure is no different than executing any other query. You can
define a SQL EXECUTE PROCEDURE statement and assign it to the CommandText
property of an AdsCommand object. Alternatively, you can assign the name of the stored
procedure to the CommandText property of the AdsCommand object, and then set the
CommandType property to CommandType.StoredProcedure. And in Advantage 10, you
can include a stored procedure in the FROM clause of a select query, as described in
Chapter 12, Introduction to Using Advantage SQL.

You create an AdsCommand object explicitly or permit an AdsDataAdapter or an
AdsConnection to create one for you. If the stored procedure returns a result set, you call
the AdsCommand ExecuteReader method, or the Fill method of the AdsDataAdapter that
refers to the AdsCommand in its SelectCommand property. If the stored procedure returns
a single value, you can also call the ExecuteScalar method of an AdsCommand. Finally, if
the stored procedure does not return a result set, execute it by calling the
ExecuteNonQuery method of the AdsCommand.

Invoking a stored procedure that takes one input parameter is demonstrated by the
following code associated with the Show 10% of Invoices button (shown in Figure 18-3).
The stored procedure referenced in this code is the SQL stored procedure you created in
Chapter 7, Creating Stored Procedures, called Get10PercentSQL.

private void callStoredProc_Click_1(object sender,
 System.EventArgs e) {
 AdsCommand storedProcCommand;
 IDataAdapter dataAdapter;
 DataSet ds = new DataSet();
 DataTable dt;
 if (paramText.Text.Equals(""))
 {
 MessageBox.Show(this, "You must supply a customer ID");
 return;
 }
 storedProcCommand = new AdsCommand("Get10PercentSQL",
 connection);
 storedProcCommand.CommandType =
 CommandType.StoredProcedure;
 storedProcCommand.Parameters.Add(1,
 System.Data.DbType.Int32);
 storedProcCommand.Parameters[0].Value =
 Int32.Parse(paramText.Text);
 dataAdapter = new AdsDataAdapter(storedProcCommand);
 dataAdapter.Fill(ds);
 dt = ds.Tables[0];
 if (dt.Rows.Count == 0)
 {
 MessageBox.Show(this, "No invoices for customer ID");
 return;
 }
 dataGrid1.DataSource = dt;
}

Chapter 18: ADS and ADO.NET 19

Navigational Actions with Advantage and ADO.NET

Within the ADO.NET framework itself, most of the navigational features that you can
access with other data access mechanisms, such as ADO (ActiveX Data Objects), Visual
FoxPro, and Delphi, are implemented in the ADO.NET DataSet, DataTable, or DataView
classes. For example, indexing, sorting, filtering, and seeking are all operations that are
performed on a DataTable's cached records using a DataView. In other words, these
operations do not involve Advantage, other than using Advantage as the original source of
the data that is manipulated in memory.

There is, in fact, only one ADO.NET navigational operation that involves
Advantage⎯scanning. Specifically, using an AdsDataReader (or an AdsExtendedReader,
which as you learned earlier, also supports filters, ranges, and seeks), you can perform a
record-by-record navigation of data. This operation is demonstrated in the following
section.

Scanning a Result Set
Scanning is the process of sequentially reading every record in a result, or every record

in the filtered view of the result set if a filter is active. In ADO.NET, scanning is
performed using an AdsDataReader or AdsExtendedReader, which you obtain from an
AdsCommand object that contains either a SQL SELECT statement, a table name, or a
stored procedure call.

Tip: If you are using ADS, and you must scan a large number of records, consider
implementing the operation using a stored procedure as described in Chapter 7, Creating
Stored Procedures. Scanning from a stored procedure installed on the same machine on
which the data resides requires no network resources.

The following code demonstrates scanning using an AdsDataReader. This code is
associated with the List Products button shown in Figure 18-3:

private void listProductsBtn_Click(object sender,
 System.EventArgs e)
{
 command.CommandText = "SELECT * FROM PRODUCTS";
 dataReader = command.ExecuteReader();
 try
 {
 while (dataReader.Read())
 {
 productList.Items.Add(dataReader.GetString(0) + " " +
 dataReader.GetString(1));
 }
 }
 finally
 {
 dataReader.Close();

20 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 }
}

Administrative Operations with ADS and ADO.NET
While Advantage requires little in the way of periodic maintenance to keep it running

smoothly, many applications need to provide administrative functionality related to the
management of users, groups, and objects.

This section is designed to provide you with insight into exposing administrative
functions in your client applications. Two related, yet different, operations are
demonstrated here. In the first, a new table is added to the database and all groups are
granted access rights to it. This operation requires that you establish an administrative
connection (or a connection from a user account with GRANT privileges). The second
operation involves permitting individual users to modify their own passwords. Especially
in the security-conscious world of modern database management, this feature is often
considered an essential step to protecting data.

Creating a Table and Granting Rights to It
The CS_ADONET project permits a user to enter the name of a table that will be created in the
data dictionary, after which, all groups will be granted rights to the table. This operation is
demonstrated in the following method, which is associated with the Create Table and Grant Rights
button shown in Figure 18-3:
private void addTableBtn_Click(object sender,
 System.EventArgs e)
 {
 AdsConnection adminConnection;
 IDbCommand adminCommand;
 AdsDataAdapter adminAdapter;
 DataSet ds;
 DataTable dt;
 DataRow dr;
 String tabName;

 tabName = tableNameText.Text;
 if (tabName.Equals(""))
 {
 MessageBox.Show(this,
 "Please enter the name of the table to create");
 return;
 }
 //Check for SQL injections hack
 if ((tabName.IndexOf(";") >= 0))
 {
 MessageBox.Show(this,
 "Table name may not contain a semicolon");
 return;
 }
 try
 {
 adminConnection = new AdsConnection(

Chapter 18: ADS and ADO.NET 21

 "Data Source=" + DataPath + ";user ID=adssys;" +
 "password=password;" +
 "ServerType=ADS_LOCAL_SERVER | ADS_REMOTE_SERVER;" +
 "TrimTrailingSpaces=True");
 adminConnection.Open();
 adminAdapter = new AdsDataAdapter("SELECT Name FROM " +
 "system.tables " +
 "WHERE UCase(Name) = '" + tabName.ToUpper() + "'",
 adminConnection);
 ds = new DataSet();
 adminAdapter.Fill(ds);
 dt = ds.Tables[0];
 if (dt.Rows.Count != 0)
 {
 MessageBox.Show(this,
 "This table already exists. Cannot create");
 return;
 }
 adminCommand = new AdsCommand("CREATE TABLE [" +
 tabName + "] " +
 "([Full Name] CHAR(30), [Date of Birth] DATE," +
 "[Credit Limit] MONEY, Active LOGICAL)",
 adminConnection);
 adminCommand.ExecuteNonQuery();
 adminAdapter = new AdsDataAdapter("SELECT Name FROM " +
 "system.usergroups WHERE Name NOT LIKE 'DB:%'", adminConnection);
 ds = new DataSet();
 adminAdapter.Fill(ds);
 dt = ds.Tables[0];
 if (dt.Rows.Count == 0)
 {
 MessageBox.Show(this, "No groups to grant rights to");
 return;
 }
 adminCommand = adminConnection.CreateCommand();
 for (int i=0; i <= dt.Rows.Count - 1 ; i++)
 {
 dr = dt.Rows[i];
 adminCommand.CommandText = "GRANT ALL ON " +
 tabName + " TO \"" + dr[0].ToString() + "\"";
 adminCommand.ExecuteNonQuery();
 }
 }
 catch (System.Exception ex)
 {
 Console.WriteLine("Exception", ex);
 throw(ex);
 }
 MessageBox.Show(this,
 "The " + tabName + " table has been " +
 "created, with rights granted to all groups");
 return;
}

This method begins by verifying that the table name does not include a semicolon,
which could be used to convert the subsequent GRANT SQL statement into a SQL script.
Since this value represents a table name, a parameterized query is not an option.

22 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Next, this code verifies that the table does not already exist in the data dictionary.
Once that is done, a new connection is created using the data dictionary administrative
account. This connection is then used to call CREATE TABLE to create the table, and
then to call GRANT for each non-default group returned in the system.usergroups table.

Note: The administrative user name and passwords are represented by string literals in
this code segment. This was done for convenience, but in a real application, you would
either ask for this information from the user or you would obfuscate this information so
that it could not be retrieved.

Changing a User Password
A user can change the password on their own connection, if you permit this. In most

cases, only when every user has a distinct user name would you expose this functionality
in a client application. When multiple users share a user name, this operation is usually
reserved for an application administrator.

The following method, associated with the Change Password button (shown in Figure
18-3), demonstrates how you can permit a user to change their password from a client
application:

private void changePasswordBtn_Click(object sender,
 System.EventArgs e)
{
 IDataReader dataReader;
 String userName;
 String oldPass, newPass, confirmPass;
 oldPass = oldPassText.Text;
 if (oldPass.Equals(""))
 {
 MessageBox.Show(this,
 "Please enter your current password");
 return;
 }
 newPass = newPassText.Text;
 if (newPass.Equals(""))
 {
 MessageBox.Show(this,
 "Please enter your new password");
 return;
 }
 confirmPass = confirmPassText.Text;
 if (confirmPass.Equals(""))
 {
 MessageBox.Show(this,
 "Please confirm your new password");
 return;
 }
 if (! newPass.Equals(confirmPass))
 {
 MessageBox.Show(this,
 "New passwords do not match");

Chapter 18: ADS and ADO.NET 23

 return;
 }
 if ((newPass.IndexOf(";") >= 0))
 {
 MessageBox.Show(this,
 "Password may not contain a semicolon");
 return;
 }
 //Get user name
 command = connection.CreateCommand();
 command.CommandText = "SELECT USER() FROM system.iota";
 dataReader = command.ExecuteReader();
 dataReader.Read();
 userName = dataReader.GetString(0);
 dataReader.Close();
 //Verify current password
 if (! CheckPassword(userName, oldPass))
 {
 MessageBox.Show("Cannot validate your current password. "
 +"Cannot change password");
 return;
 }

 try
 {
 command.CommandText = "EXECUTE PROCEDURE " +
 "sp_ModifyUserProperty('" +
 userName + "', 'USER_PASSWORD', '" + newPass + "')";
 command.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 return;
 }
 MessageBox.Show("Password successfully changed. " +
 "New password will be valid next time you connect");
}

A number of interesting tricks are used in this code. First, the user name is obtained by
requesting the USER scalar function from the system.iota table. USER returns the user
name on the connection through which the query is executed. Next, the user is asked for
their current password, and the user name and password is used to attempt a new
connection, which if successful confirms that the user is valid. This password validation is
performed using the custom CheckPassword method. The following is the implementation
of this method:

private Boolean CheckPassword(String uName, String pass)
{
 //Verify the current password
 AdsConnection tempConnection;
 tempConnection = new AdsConnection(
 "Data Source=" + DataPath + ";user ID=" + uName + ";" +
 "password=" + pass + ";" +
 "ServerType=ADS_LOCAL_SERVER | ADS_REMOTE_SERVER;" +
 "TrimTrailingSpaces=True");

24 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 try
 {
 tempConnection.Open();
 tempConnection.Close();
 return true;
 }
 catch (Exception)
 {
 return false;
 }
} //CheckPassword

Finally, the user is asked for their new password twice (for confirmation). If all is well,
the sp_ModifyUserProperty stored procedure is called to change the user's password. This
password will be valid once the user terminates all connections on this user account.

Note: If you run this code, and change the password of the adsuser account, you should
use the Advantage Data Architect to change the password back to password. Otherwise,
you will not be able to run this project again since the password is hard-coded into the
connection string.

	Advantage and ADO.NET
	The Right Provider for Visual Studio
	Visual Studio Component Editors
	Full ADO.NET 2.0 Support
	Advanced Visual Studio Integration
	A Note About the Examples

	Performing Basic Tasks with ADS and ADO.NET
	Connecting to Data
	Executing a Query
	Using a Parameterized Query
	Reading and Writing Data
	Calling a Stored Procedure

	Navigational Actions with Advantage and ADO.NET
	Scanning a Result Set

	Administrative Operations with ADS and ADO.NET
	Creating a Table and Granting Rights to It
	Changing a User Password

