Chapter 19: ADS and the .NET Entity Framework 1

Chapter 19
ADS and the .NET Entity Framework

Note: This chapter accompanies the book Advantage Database Server: A Developer's
Guide, 2nd Edition, by Cary Jensen and Loy Anderson (2010, ISBN: 1453769978). For
information on this book and on purchasing this book in various formats (print, e-book,
etc), visit: http://www.JensenDataSystems.com/ADSBook10

In nearly all of the chapters in Part III of this book, we have looked at specific
Advantage drivers that permit you to execute SQL queries against your data. This chapter
is a bit different in that we will be looking at a specific framework within .NET.
Specifically, while the driver is the Advantage .NET Data Provider, we will be focusing
on a framework built on top of ADO.NET, the .NET Entity Framework.

As is the case with the other chapters in Part III of this book, this discussion assumes
that you are already familiar with the development environment that is being used, which
in this chapter is Visual Studio and the C# language. As a result, the focus of this chapter
is on the .NET Entity Framework, and the code that works with the data dictionary you
have been using throughout this book.

What Is the .NET Entity Framework?

The .NET Entity Framework is an object-oriented system of types, interfaces, and
objects that you can use in your applications to work an underlying database. When you
use the NET Entity Framework, you do not write traditional SQL statements. Instead,
you use the methods of the classes of the entity framework to retrieve, edit, and save your
data. In turn, those classes generate and execute the necessary SQL statements that
perform these operations.

At first glance, the .NET Entity Framework appears to be an alternative to ADO.NET
(which was covered in detail in Chapter 18, ADS and ADO.NET). In reality, when you use
the .NET Entity Framework you are also using ADO.NET, though not directly. The
classes that you interact with when using the .NET Entity Framework use the ADO.NET
classes, such as DbConnections, DbDataReaders, and DbCommands, to perform the
operations that you request.

Similarly, choosing to use the .NET Entity Framework in no way restricts you from
using ADO.NET directly. In fact, there are a number of Advantage-related operations that
are not directly available to you through the .NET Entity Framework, such as executing

2 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

system stored procedures or reading from system tables. In those cases, the easiest way to
perform those operations may be to connect an AdsConnection object to your database
and access those operations through an AdsCommand. (If you want to use the NET
Entity Framework exclusively, you would need to write a SQL stored procedure that
performs the particular operation you are interested in, and import that stored procedure
into your entity model.)

There are two primary motivations behind the .NET Entity Framework. The first is to
provide a mechanism for working with your data that is database agnostic (works the
same regardless of which database you are using). For example, in the .NET Entity
Framework you query your data using either Language INtegrated Query (LINQ) or
Entity SQL, and neither of these languages are specific to a particular database (you use
the same statements regardless of which database your data is stored in).

By comparison, when using ADO.NET, the SQL statements that you assign to your
DbCommand instances must employ the dialect of SQL appropriate for the database to
which they will be sent. In other words, DbCommands pass the SQL you write directly to
your database. With the NET Entity Framework, the SQL you write is interpreted by the
classes of the entity framework, and those classes emit the appropriate dialect of SQL for
the underlying database.

The second motivation to the .NET Entity Framework is to provide a consistent,
object-oriented interface to your data, treating your data like other objects that you work
with. For example, you often use LINQ to Entities to access your data using the NET
Entity Framework. LINQ to Entities is very similar in syntax and usage to LINQ to
Objects, a declarative programming language that you can use in the .NET framework to
manipulate collections, arrays, or [Enumerable objects. In other words, you data becomes
just another type of object to use in code.

When using ADO.NET directly, you are accessing your data using the set-oriented
approach provided for by the structured query language (SQL), and you must be
comfortable with both the nature of SQL and that of relational databases. Using the .NET
Entity Framework, your objects are responsible for maintaining the associations between
the underlying tables of your relational database.

Both of these goals are achieve in the .NET Entity Framework through classes and
collections of the System.Data.DataClasses namespace, including EntityObject and
EntityCollection. These classes are base classes from which the objects that represent
your data descend.

These classes represent what is called the conceptual data model. The conceptual data
model is an abstraction of your underlying data, and not only defines the objects you will
use to access your data, but also the relationships between these objects, based on your
underlying relational database model.

Another set of classes represents your actual database architecture. This is what is
referred to as the storage model. The storage model, which you do not work with directly

Chapter 19: ADS and the .NET Entity Framework 3

in your code, is responsible for actually reading and writing data to and from your
underlying database.

The relationship between the conceptual model and the storage model is defined by a
set of mappings, which define the relationships between the various entities. Together,
the conceptual model, the storage model, and their mappings work together to define
what is called the entity data model.

The following section provides you with a more detailed description of entity data
models, and how you create them.

Entity Data Models

In most cases, you will generate your entity data models, storage models, conceptual
models, and their mappings, in Visual Studio using the provided wizards for C# and
Visual Basic for NET. However, in order to use these wizards, your database tables must
include certain definitions. Specifically, your tables must support primary key definitions.
In addition, those fields that participate in the primary key must have their Allow NULLS
property set to False.

Currently, only the ADT and Visual FoxPro table formats associated with a data
dictionary support these features. Clipper and FoxPro DBF tables, and any Advantage
table type not associated with a data dictionary, do not support these features.

It is possible, however, to use these unsupported table types in entity framework
applications. However, you cannot use the wizards provided by Visual Studio. Instead,
you must manually define the storage schema definition (.SSDL file), and then use the
edmgen2.exe tool provided by .NET 4.0 to generate your entity data model designer
(*.EDMX), your conceptual schema definition (*.CSDL), and the mappings
between the storage and conceptual models (*.MSL).

The .NET 3.5 framework (SP1) provides you with the edmgen.exe tool. This tool can
generate *.CSDL and *.MSL files from your *.SSDL file, but it cannot generate the
* EDMX file.

Note: If you must create the storage schema definition language (SSDL) file manually,
consider first exporting your tables to one of the formats that support non-null primary
keys. Then, use the wizards in Visual Studio to generate the EDMX file, after which you
can build your solution. When building a solution that includes an EDMX file, Visual Studio
generates the associated SSDL file (search for a subdirectory named edmresources,
which is a subdirectory of your project directory). You can the use this SSDL file as the
starting point for your manually created SSDL file.

In addition to defining the entity types associated with tables in your database, the
ADO.NET Entity Data Model wizards can also define associations between your table's
entity types. For example, consider the CUSTOMER and INVOICE tables in the
DemoDictionary data dictionary that you have been working with in this book. The

4 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

ADO.NET Entity Data Model wizards can recognize that there is a relationship between
these two tables (a customer may be associated with zero or more invoices, and a given
invoice is associated with zero or one customers).

In order for the ADO.NET Entity Data Model wizard to automatically determine the
relationships between your tables, you must define the referential integrity (RI)
definitions that represent these relationships. On the other hand, you might recall that in
Chapter 5, Defining Constraints and Referential Integrity, we noted that referential
integrity can sometimes introduce unwanted side effects, such as placing locks on all
tables involved in the referential integrity definition even if only one of the tables
involved is being edited.

It is possible to add related tables to your entity model without defining referential
integrity constraints. Once again, however, this involves some manual adjustment.
Specifically, you can add the tables to the model without RI, in which case the entity
model generated by Visual Studio will not include associations. You can then using the
entity model designer to manually add any required associations.

Creating the Entity Data Model

This section describes the steps necessary to create an entity data modal for selected
tables from the DemoDictionary data dictionary. These steps make use of the ADO.NET
Entity Data Model wizard for C# included in Visual Studio 2010 to define the various
entity types and their associations.

Because we are using the wizard to generate the type definitions we will use in the
sample application, it is important that the database objects (the tables and their table and
field properties) are defined correctly. In addition, we need to ensure that the necessary
referential integrity definitions are in place before using the template. As a result, this
discussion begins by ensuring that your database is in the correct state.

Preparing the Database for Building the Entity Model

Even if you have followed all of the step-by-step instructions given in Chapters 4 and
5, your tables will still require a slight modification to at least one field-level constraint.
If you did not follow the steps in Chapters 4 and 5, there may be even more changes that
you will need to make.

Since each table will require some attention, we have simplified this example
somewhat by adding only three of the tables from the DemoDictionary database to the
entity data model. These tables are CUSTOMER, EMPLOYEE, and INVOICE. Use the
following steps to ensure that these tables are in the correct state for use with the
ADO.NET Entity Data Model wizard:

1. With DemoDicationary connected in the Connection Repository, right-click
the CUSTOMER table and select Properties.

Chapter 19: ADS and the .NET Entity Framework 5

2. On the Fields tab of the Table Designer, select Customer ID in the Field
Names list. With Customer ID selected, ensure that the Index property is set to
Primary, and that NULL Valid is set to No. (NULL Valid is a property that
you will likely have to change for all three of these tables, as none of the
examples in earlier chapters of this book has required you to change this
property from its default of Yes.) When you are done, click OK to save your
changes.

3. Next, display the Table Designer for the EMPLOYEE table. With the
Employee Number field selected in the Field Names list, ensure that Index is
set to Primary and NULL Valid is set to No. Click OK when you are done.

4. Display the INVOICE table in the table designer. Select the Invoice No field
in the Field Names list, and make sure that Index is set to Primary and NULL
Valid is set to No. Click OK to close the Table Designer.

5. The final step is to verify that you have referential integrity constraints set
between both the CUSTOMER and INVOICE tables, as well as between the
EMPLOYEE and INVOICE tables. Begin by right clicking the RI OBJECTS
node for the DemoDictionary data dictionary in the Connection Repository
and select Visual Designer. If the RI Visual Designer contains the two
referential integrity definitions shown in Figure 19-1, you are ready to go. If
not, refer to Chapter 5, Defining Constraints and Referential Integrity, and
follow the steps in the sections "Defining Referential Integrity Constraints"
and "Using the Visual Designer" to create the two referential integrity
constraints shown in Figure 19-1.

| .| RIVisual Designer ’E”_IEI
dables il
CUST_BAK CUSTOMER
CUSTOMER [s B |
DEPARTMENTS ;—}CUSTOMER jin] INVOICE
EMPLOYEE =gl NOTES 1 £ INVOICENO
INVOICE <1 CUSTOMER 1D
ITEMS Customer ID £1 EMPLOYEE ID
PRODUCTS First Name e
TEST Last Name Invoice No
Address Customer ID EMPLOYEE
City Employee ID | & EmPLOYEE NUMBER =
State fvoiceBate (] || e
Zip Code Date Payment Received Employee Number ||
Phane Number Invoice Due Date First Mame |
Notes Last Name
Mumber Calary 5
4 | L} 3 4| HI F
Rules = — :

Custorner Invoices
Employee Sales

oK H Cancel H Print... H Help |

Figure 19-1: Two referential integrity constraints in the RI Visual Designer

6 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

Once your tables have been configured as described above, you are ready to use the
ADO.NET Entity Data Model wizard.

Using the ADO.NET Entity Data Model Wizard

In order to use the .NET Entity Framework, it is necessary to define the classes that
you will use to access your data. This requires that you define both a conceptual model
and a storage model, as well as the mapping between them. While this can be done
manually by creating the necessary files using the storage schema definition language, the
conceptual schema definition language, and the mapping specification language (all
XML-based languages), and then running the appropriate tool, such as edmgen2.exe.
Taking this approach would be tedious, to say the least.

Fortunately, Visual Studio provides the ADO.NET Entity Data Model wizards for C#
and Visual Basic for .NET developers. These wizards create an entity data model, as well
as the necessary classes that you can use in your applications to work with your data.

Code Download: The examples provided in this chapter can be found in the C# project
AdvantageEntityFramework available with this book's code download (see Appendix A).
These projects were written in Visual Studio 2010.

The following steps demonstrate how to create the simple entity data model that is
used in the sample application discussed in this chapter:

1. Begin by creating a new Windows forms application project using either the
Windows Forms Application wizard for C# or Visual Basic for .NET. Save
the project using a name of your choice.

2. Right-click the project name in the Solution Explorer and select Add | New
Item.

3. From the Add New Item dialog box, select the ADO.NET Entity Data Model
wizard and set name to InvoiceModel.edmx. When ready, click Add. Visual
Studio displays the Entity Data Model Wizard, shown in Figure 19-2.

4. From the Entity Data Model Wizard, select Generate from database and click
Next.

Chapter 19: ADS and the .NET Entity Framework 7

Entity Data Model Wizard

| ;éj_/ Choose Model Contents

What should the model contain?

B

EEE Empty model
from
database

2 [l

Generates the model from a database, Classes are generated from the model when the project is compiled.
This wizard also lets you specify the database connection and database objects to include in the model.

e

Figure 19-2: The Entity Data Model Wizard

5. When asked to choose a connection, select Advantage Database Server as
shown here and click Continue.

Choose Data Source

B =

Data source:

Advantage Database Server L=t
Microsoft SQL Server Use this selection to connect to

Microsoft SQL Server Compact 3.5 Advantage Database Server using the

Microsoft SQL Server Database File Advantage .MET Data Provider.
<other>

Data provider:

’.NI:—I' Framework Data Provider for Adva v]

[] Always use this selection l Continue] l Cancel

6. Next, use the Connection Properties dialog box to configure your connection
string. Set Data Source to the path of your DemoDictionary data dictionary

8 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

file (we have been using c:\AdsBook\DemoDictionary.add throughout this
book). Also, set User ID to adssys, ServerType to Remote, and
TrimTrailingSpaces to True. Your Connection Properties dialog box should
look something like that shown in Figure 19-3.

-

Connection Properties @

Enter information to connect to the selected data scurce or
click "Change" to choose a different data source and/or
provider,

[Data source:

Advantage Database Server (Advantage.l Change...

)
4 Data =
ConnectionString Data Source=c\AdsBook) -
4 Data Source
(Data Source) cA\AdsBoolk\DemoDiction
Initial Catalog
Password
User ID adssys
4 Pooling il
ServerType

Specifies the server type to use for the connection.

Test Connection ‘ [OK ” Cancel

Figure 19-3: Configuring the connection string

7. Click Test Connection to test your connection using these settings. If there is
an error, fix your connection properties and test the connection again. Once
you get confirmation that you connection succeeded, click OK to return to the
Choose Your Data Connection page of the Entity Data Model Wizard.

8. From this dialog box, make sure that Save entity connection settings in
App.Config as is checked, and the name is set to InvoiceEntities, as shown in
Figure 19-4. Click Next to continue.

Chapter 19: ADS and the .NET Entity Framework 9

Entity Data Model Wizard 7

| J— y Choose Your Data Connection
— =

Which data connection should your application use to connect to the database?

chAdsBook\DemaoDictionary.add v| ‘ Mew Connection...

Entity connection string:

metadata=res://"/Modell.csdl|res///Modell.ssdl|
res://*/Modell.msl;provider= Advantage.Data.Provider;provider connection string="Data Source=c:
“WAdsBook\DemoDictionary.add;User ID=adssys; TrimTrailingSpaces=Trug ServerType=REMOTE"

[¥] Save entity connection settings in App.Config as:

InvoiceEntities

< Previous | [Mext = 5 Cancel |

Figure 19-4: Defining the data connection

9. The Entity Data Model Wizard now retrieves metadata from the database.
Once it has completed this process, it displays the tables, views, and stored
procedures defined in your data dictionary, and permits you to select which of
these you want to use in your application. Since we want to include only the
CUSTOMER, EMPLOYEE, and INVOICE tables in this model, expand the
Tables node and place a check mark next to CUSTOMER, EMPLOYEE, and
INVOICE.

10. Next, expand the Stored Procedures node, and place a check mark next to
SQLGet10Percent.

11. Finally, set Model Namespace to InvoiceModel. When you are doing, the
wizard should look something like that shown in Figure 19-5. Click Next to
continue.

10 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

* Entity Data Model Wizard =)

| ,J» Choose Your Database Objects

-

Which database objects do you want to include in your model?

I_?_-ﬁ:l Tables -
[¥]] CUSTOMER F
[C]] CcusT_BAK
[CI=] DEPARTMENTS
[¥]] EMPLOYEE
[¥]= INVOICE
[C1] mEMS
[CI=] PRODUCTS

_.éﬂ Wiews

[¥] % Stored Procedures
[T]:Z] ArchiveEmployee -

[TT=Z] DoSomething

1] GetlOPercent
':i’]j SQLGetl0Percent =

m

[¥] Pluralize or singularize generated object names

[] Include foreign key columns in the model

Model Namespace:

InvoiceModel

< Previous et Finish] I Cancel

Figure 19.5: The final step in configuring the entity data model

12. The Entity Data Model Wizard now examines the objects that you selected
and generates a visual depiction of your entity objects in the ADO.NET Entity
Data Model Designer, as shown in Figure 19-6.

Chapter 19: ADS and the .NET Entity Framework 11

InvoiceModel.edmx® X EElinn RS (2S00

s CUSTOMER
= Properties
Customer_ID “s INVOICE
1 First_Name
25 Last_Mame = Properties s EMPLOYEE
fﬁ;ﬁ.ddress f?ﬁlnvoice_l\]o
2 City B Customer_ID = Properties
5 State | 5 Employee_ID # Employes_Mum...
™ Zip_Code 01 * B Invoice_Date 5 First_Name
' Phone_Number = Date Payment_... |7, o1 57 Last_Mame
B5 Notes 4 Invoice_Due Date fl: Salary
! Number =/ Navigation Properties 2 Department Code
= Navigation Properties & cusTOMER = Navigation Properties
B NvoIcEs] EMPLOVEE Bz, NvOICEs

Figure 19-6: The InvoiceModel in the ADO.NET Entity Data Model Designer

At this point, our entity data model is complete, as far as the table objects are
concerned. However, we did select a stored procedure, and there is an additional step
that you must take before you will be able to use it. Specifically, you need to import
each of the stored procedures that you have included in your entity model.

Use the following steps to import the SQLGet10Percent stored procedure:

1. Begin by selecting the Model Browser tab. (By default, the Model Browser
tab is located in the same tab group as the Solution Explorer, and is only
visible when your entity model edmx file is selected in the editor. If you do
not see the Model Browser tab, select the InvoiceModel.edmx file in your
editor).

12 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

.Model Browser = 0 %

Type here to search i

e 3 InvoiceModel.edmy
4 | &] InvaiceModel
[23 Entity Types
|3 Complex Types
| Associations
(] EntityContainer: InvoiceEntities
4 | || InvoiceModel.Store
[Tables / Views
| Stored Procedures

Constraints

‘ﬁ Solution Explo... W% Team Explorer @ Model Browser
2. Expand the Stored Procedure node beneath InvoiceModel.Store.
3. Right-click SQLGet10Percent and select New Function Import.

4. Leave Function Import Name and Stored Procedure Name set to
SQLGet10Percent.

5. Inthe Returns a Collection Of radio button group, select Scalars, and then
select Strings from the associated combo box. When you are done, the Add
Function Import dialog box should look like that shown in Figure 19-7.

6. Click OK to close. (Although the memo that appears on this dialog box
instructs you to click the Get Column Information button, do not click that
button. If you do, you will get a System.NotSupportedException exception.)

Chapter 19: ADS and the .NET Entity Framework
Add Function Import @
Function Import Mame:
SQLGetlOPercent

Stored Procedure Mame:;

SQLGetlOPercent -

Returns a Collection Of

) Mone

@ Scalars: String -

7) Complex

() Entities:

Stored Procedure Column Information

Get Column Information

Click on "Get Column Information” above to retrieve the stored
procedure's schema, Once the schema is available, click on "Create Mew
Complex Type" below to create a compatible complex type, You can
also always update an existing complex type to match the returned
schema. The changes will be applied to the model once you click on
OK.

oK l ’ Cancel

Figure 19-7: The Add Function Import dialog box

TE: The following paragraph appears to be incorrect. I actually removed the
Advantage.Data.Entity.dll assembly from the sample project, and it ran fine.
What is this assembly used for, and when would I need it? It seems like I should
remove this following paragraph and the associated steps. Cary
The Advantage.Data.Entity.dll provides the translation from Ling to Entity and Entity
SQL to the Advantage SQL syntax. I don’t know how your project worked, but you
definitely need this assembly. Including it in the project also makes it easier to ship a
completed project since all the assemblies you need are part of the project and can be

13

14 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

copied local. InstallShield can also check your dependencies at install time to make sure
that everything is included.

There is one more step that you will need to take before you can start using your entity
data model objects with Advantage. You will need to add the Advantage assembly that
supports the entity framework to your project's references. This is described in the
following steps:

1. Right-click your project in the Solution Explorer and select Add Reference.

2. From the Add Reference dialog box, select the Browse tab. Use the controls
on this page to navigate to the directory where the Advantage Data Provider is
installed. By default, this will be in ¢:\Program Files\Advantage\ado.net. (If
you are running a 64 bit operating system, the Advantage folder is beneath the
Program Files (x86) directory.)

3. From that location, select either 3.5 (for 3.5 .NET Entity Framework support)
or 4.0 (for 4.0 .NET Entity Framework support). Select the file named
Advantage.Data.Entity.dll and click OK.

This brings up one more issue. The entity framework is support only by .NET 3.5 and
later. Any project that you create and add an entity data model to must target NET 3.5 or
later.

Unlike the ADO.NET project described in Chapter 18, ADS and ADO.NET, it is not
always necessary to add the Advantage.Data.Provider assembly as a reference to your
project. The only time that Advantage.Data.Provider needs to be added as a reference is
when you specifically want to use one of the concrete classes of the Advantage .NET
Data Provider.

The Sample Application

The sample application associated with this chapter is roughly similar to the sample
applications that appear in the other chapters in this section. The main form of this
running application is shown in Figure 19-8.

Chapter 19: ADS and the .NET Entity Framework 15

w ALFS and e WET Emity Fravmewoe; = s el

Sherw Curdrnere L LS i Brade

Enty WA SELECT BELECT VALUEC FROM retanetrtiess T 5 TOMERS A5 ¢ Emtii it Chsy
Lt Enplopsss Eowr irroicas for Cuisl oo Shorn imagioes
w1 o Wyt
Chuar Lisi

Custpanes panbes D Aodesiy

Figure 19-8: The main form of the AdvantageEntityFramework application

In creating this application, we wanted to demonstrate a variety of ways to interact
with your data using the entity framework. As a result, while most of the examples
employ entity objects to perform tasks, we have also included several examples that
employ Entity SQL. In addition, many of the examples make use of Language INtegrated

Query (LINQ).

If you are going to build applications using the .NET Entity Framework, you are going
to need to become fluent in a number of technologies. In addition to LINQ, and possibly
Entity SQL, you will also need to familiarize yourself with Lambda expressions (which
we have not made use of in this chapter). All of these topics are outside the scope of this
book. As a result, the descriptions of the code samples that follow do not attempt to make
any detailed comments about these technologies, other than noting their presence in the
code.

Performing Basic Tasks with Advantage and the
.NET Entity Framework

This section describes some of the more common tasks that you can perform with the
entity framework. These include connecting to your data, querying data using LINQ to
Entities, querying data using Entity SQL, using a parameterized Entity SQL query, and
executing a stored procedure.

16 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Connecting to Data

The entity model used in the AdvantageEntityFramework project was created using
the same steps shown earlier in this chapter. As a result, the connection string information
associated with this project was stored in the App.Config file. Nonetheless, before we can
use any of the entity types exposed by our entity model, we must instantiate an instance
of the ObjectContext object generated by the Entity Data Model Wizard.

In this particular project, the name of the ObjectContext is InvoiceEntities. We created
a private variable in our form class to hold a reference to this object. The following is this
declaration:

private InvoiceEntities invoiceContext;

The instance of InvoiceEntities is created and assigned to the invoiceContext variable
in the Load event handler for this form. The following is this event handler:

private void Forml Load(object sender, EventArgs e)

{
//Initialize the ObjectContext
invoiceContext = new InvoiceEntities();

}

The InvoiceContext class is an IDisposable implementing class. As a result, we are
responsible calling the Dispose method of this class when we no longer need it. The
following is the FormClosing event handler for the main form:

private void Forml FormClosing(object sender, FormClosingEventArgs e)

{
//dispose of the object context
invoiceContext.Dispose () ;

}

Once the form is loaded, the variable invoiceContext can be used to access the various
objects of our conceptual model. For example, the following line of code demonstrates
how the stored procedure that we imported in our model can be called from the
ObjectContext:

invoiceContext.SQLGet10Percent (custNo) ;

If you want to use the EntityProvider (a .NET data provider included in the .NET
Framework that you can use to work with an entity model), you are going to have to use
another mechanism for defining the connection to your data dictionary. The following
code shows how to configure an EntityProvider:

EntityConnectionStringBuilder entityBuilder =
new EntityConnectionStringBuilder () ;
entityBuilder.Provider = "Advantage.Data.Provider";
entityBuilder.ProviderConnectionString = @"Data Source=
c:\AdsBook\DemoDictionary.add;user ID=adssys;
ServerType= LOCAL | REMOTE;TrimTrailingSpaces=True";
entityBuilder.Metadata = @"res://*/InvoiceModel.csdl |

Chapter 19: ADS and the .NET Entity Framework 17

res://*/InvoiceModel.ssdl |
res://*/InvoiceModel .msl1l";
EntityConnection conn = new
EntityConnection (entityBuilder.ToString()) ;
conn.Open () ;
// You can now get create EntityCommand and EntityDataReader
// classes to work with your data

Access Data Using LINQ to Entities

LINQ to Entities permits you to use LINQ to query the entity types in your entity data
model. The code associated with the button labeled Show Customers Using LINQ to
Entities demonstrates a simple LINQ query that retrieves all customers from the
CUSTOMER table, sorted by the Last Name field. The result of this query is then bound
to the data grid view named dataGridView1:

private void btnShowCustomers Click(object sender, EventArgs e)
{
// Define a query that returns all customer
// objects ordered by last name.
var customerQuery = from c in invoiceContext.CUSTOMERS
orderby c.Last Name
select c;
try
{
//Display the returned result in the data grid view
this.dataGridViewl.DataSource =
((ObjectQuery) customerQuery) .Execute (MergeOption.AppendOnly) ;
}
catch (Exception ex)
{
MessageBox.Show (ex.Message) ;
}
}

After clicking this button, the main form looks something like that shown in Figure
19-9.

18 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

| #e AIFS and e WET Bty Framesaned; o o |

I Shera (urlarsers Leng LING i Fradms

By SO SELECT BELECT VALUEC FROM inevoaabiiess C1E TOMERS. A5 2 B i Chasy
List Enplopsan Exoer irnvpicw dor Cuslrerme Shern imaciomm
B
Chuar Lisi
Custnanes Pharked Dl hodesig
ol Adcrums Sl Ackium
oI Font_ P Las_Hares Buicidg = 2% 1] Oipr_Comide
] w'l-n Hwrad 1278 Futh Lny Seatu WA SE12E
1534 Frads Ahicm 7T hedh Bed | Maddn] EEEE1
1HH i] Hrooea 5582 Shade Cras . | Wasivile Hd tELE
1H4E Aam Krrria E3T1 Vet [irimrd OH 41148

Figure 19-9: A LINQ query retrieved the CUSTOMER data

LINQ queries can be very sophisticated, and can include a wide variety of LINQ
methods and functions, as well as Lambda expressions, and can also perform
transformations on the values that they return.

Accessing Data Using Entity SQL

Entity SQL is a SQL-like language for querying an entity data model. One advantage
of Entity SQL is that it is storage independent, meaning that you use the same syntax
regardless of the database from which your entity objects get their data.

On the other hand, one of the limitations of Entity SQL is that there is no
EntityDataAdapter class that you can use to fill DataTable objects. As a result, if you
want to bind the data returned from Entity SQL queries, you will have to do so
programmatically. Similarly, if you want to write changes made to data retrieved using
Entity SQL, you will again have to do so programmatically.

The main form of the AdvantageEntityFramework project contains a button labeled
Execute Query. This button configures an EntityConnection object, after which an
EntityCommand instance is created and used to execute the Entity SQL query that
appears in the TextBox to left of the button.

The following is the Click event handler associated with the button labeled Execute
Query:

Chapter 19: ADS and the .NET Entity Framework

private void entitySQLQuery Click(object sender, EventArgs e)

{

}

try

{

}

listBoxl.DataSource = null;
EntityConnectionStringBuilder entityBuilder =
new EntityConnectionStringBuilder();
entityBuilder.Provider = "Advantage.Data.Provider";
entityBuilder.ProviderConnectionString = @"Data Source=
c:\AdsBook\DemoDictionary.add;user ID=adssys;
ServerType= LOCAL | REMOTE;TrimTrailingSpaces=True";
entityBuilder.Metadata = @"res://*/InvoiceModel.csdl |
res://*/InvoiceModel.ssdl |
res://*/InvoiceModel . .msl1l";
EntityConnection conn = new
EntityConnection (entityBuilder.ToString());
conn.Open () ;
EntityCommand command = conn.CreateCommand () ;
//Get the Entity SQL command
command.CommandText = entitySQLTextBox.Text;
StringBuilder sb = new StringBuilder();
EntityDataReader dataReader =
command .ExecuteReader (
System.Data.CommandBehavior.SequentialAccess) ;
while (dataReader.Read())

{
for (int 1 = 0; (i < dataReader.FieldCount); i++)

{
sb.Append (dataReader.GetValue (i) .ToString () .Trim() + ", ");
}
listBoxl.Items.Add(sb.ToString()) ;
sb.Clear();
}

conn.Close();

catch (Exception ex)

{
}

In this example, the query results are returned in an EntityDataReader, a read-only,

MessageBox.Show (ex.Message) ;

forward navigating cursor to the result set. This data reader is then used to assemble a
string representing each record of the query result, and these strings are added to the
listbox that appears below the SQL statement, as shown in Figure 19-10.

19

20 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

#¢ A 104 the. NEF Exty Fremewuk o e |
i e g LI Eti
Entw) 500 SELECT SELECT VALUEC FROM InvieEntss Lt TOMERS A5 & [Essainasy.
11350, Sarmsal Froutn, 2007 Hatare fovn, Husparm, WL 23401 [555) ET1.0068 e -1
VT, B, S, BE51 Fivedan D, Shewd, [, B2073, (V51 ATT G942 |

19614 L, Wiong, 328 Cosan Dr. Cowmbunc, Wi, SEIEY, 555, 2530084, Ho ol Coordrate wit Rk fo condact this ot

1257, Dbt F-Il-:hei-'-?z?'i-mo-o-ﬂs. Colnba, M5, W00, (B85 TE1-217.

16413 Karmry Gratoars, E36E Mo 0, Tigard OF, 37258, (555 38000051

1157, Be. Mamas. TEIE Gowd S, Hansnalie, 1L, EDEEL. '.-E-'J- FIHERAE, Mo ool Coorhras wilfy Pl F vou ressd 10 0onesdt B dustieed.
132 Fapc-.!rnl-r-; 4135 Shrub Dl O, Parsoston, B, 17565 S5 VEHISEE, Ho call Lnurmmmm'p..nndm:d-du-m

Lt Ent!pln ; Erewr irwoica dar Custcome i'm rnu-
- B
I_:Ill'l.d
Custnanes Pharked Dl hodesig
Gusperey T/ Font_ P Las_Hares Buicidg = 2% 1] Oipr_Comide Pring_fmbes T
v R = wa IRl | Seas WA seE B AT
154 Freds Shew 8370 hipth Bivd | Mason L&} EEEE1 sy 951550
1HT 12 oo 5552 Shade (s | Wasivile Hd o b 55 BT
ik fam dirrois E3T1 Wit [Cirimrd ful] 41148 0 i 1T

Figure 19-10: Data returned from an Entity SQL query is displayed in a list box.

Navigating a Query Result using LINQ

In the previous LINQ to Entities example shown in this section, the results of the
LINQ query were cast as an ObjectQuery, which enabled it to be bound to a data source.
The LINQ query results can also be iterated over, which permits the data to be read
record-by-record.

An example of iterating over the results of a LINQ query is demonstrated in the Click
event handler associated with the button labeled List Employees, as shown here:

private void btnListEmployees Click(object sender, EventArgs e)
{
//define the LINQ query
var employeeQuery = from emp in invoiceContext.EMPLOYEEs
orderby emp.Employee Number
select emp;
try
{
//Add data about each employee to the list box
foreach (var m in employeeQuery)
{
1bEmployees.Items.Add (String.Format ("{0} : {1} {2}",
m.Employee Number, m.First Name, m.Last Name));
}
}
catch (Exception ex)

{

Chapter 19: ADS and the .NET Entity Framework 21

MessageBox.Show (ex.Message) ;
}
}

The results of this query execution can be seen later in this chapter in Figure 19-11.

Executing Parameterized Queries

It is arguable whether LINQ to Entities supports parameterized queries or not.
Specifically, there is no parameter-type object in a LINQ query. If you need to have
variable parts of a LINQ query, you achieve that end by including variables in the where
clause. This is a bit like concatenating data from an outside source into a SQL query.

The following is a segment of code that demonstrates how to include external data in a
LINQ query. In this case, the data is obtained from a text box on the main form:

Int32 custNo;
if (! Int32.TryParse (tbCustNumberl.Text, out custNo))

{
MessageBox.Show (tbCustNumberl.Text + " is not a number");

return;

}

//define a query that selects a customer based on

//the entered value

var customerQuery = from c in invoiceContext.CUSTOMERS
where (c.Customer ID == custNo)
select c;

While the custNo variable in this code segment is not a true parameter, there is not a
security issue introduced by the use of external data from its use. Specifically, the nature
of LINQ queries do not make them vulnerable to SQL injection in the same way that SQL
scripts do.

For truly parameterized queries, you can either use Entity SQL or a generic
ObjectQuery. In both cases, your query string can include one or more named parameters,
which are identified by the @ character. You then create one parameter object for each of
the parameters in the query string before the query is executed.

An example of a parameterized query is provided in the Click event handler associated
with the button labeled Show Invoices. After entering a customer number into a text box
named tbCustNumber2, clicking the button constructs a parameterized verbatim string
that is associated with an ObjectQuery obtained from the entity context. The value of the
text box is then associated with the query parameter before the query is executed and its
results displayed in a data grid view on the form.

The following is the code associated with the Click event handler from the Show
Invoices button. After clicking this button, the main form looks something like that shown
in Figure 19-11.

private void btnShowInvoices Click(object sender, EventArgs e)

{

22 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

if (tbCustNumber?2.Text.Equals (String.Empty))
{
MessageBox.Show ("Enter a customer number");
return;
}
int custNo;
if (! int.TryParse (tbCustNumber2.Text, out custNo))
{
MessageBox.Show (tbCustNumber2.Text + " is not a number");
return;

try
{
string queryString =
@"SELECT VALUE Invoices FROM invoiceEntities.INVOICEs
AS Invoices WHERE Invoices.Customer ID = @id";
ObjectQuery<INVOICE> invoiceQuery =
new ObjectQuery<INVOICE> (queryString, invoiceContext) ;

// Add any required parameters
invoiceQuery.Parameters.Add (new ObjectParameter ("id", custNo));
//execute the query
dataGridvViewl .DataSource = invoiceQuery;
}
catch (Exception ex)
{
MessageBox.Show (ex.Message) ;

}

Chapter 19: ADS and the .NET Entity Framework 23

v A% rd e HET Ertiy Framewonk — |
hora Dusiorsers Leng LING 2 Bt
Eniwy S0 SELECT BELECT VALUEC FROM Fevisoebriless LG TOMERS A5 EmScLLE Gty
115, Sarmsnl Fouta, 2067 Hatard orm, Husprerm, ML 253401, (5551 ET10068 e s |

HETT], By, Cia, BES Revedwan Dr, Dhasl, |4 0073, (R 4TG0

19614 Li Wang, £325 Ccsan D, Gesanbank: !l‘uﬁ 5!! A, ::E-;E-..L'Sd Ha cul. Coordirasie with Rudu i younesd 2 condsd this cusireer>

18970 Db, Mokl L?E?'I\Hﬂmﬂi-. Cohindas, M5 3R 550 D21,

16412 Harmr, Girafoars, E36E Flama 0, Tigend 0F; fl"L"\-l (E55) 103051

1157, Bree, Mo, RIS Gowed M, Mapsnole, 1L EDBEA '.-E-')- FIFELAE, Mo oall, Coumrhrams wilh PLbd I souiressd 1o conesct ha dustomes

IlH]F:mhiw 4135 S Caie D Farsmabon, PO, 37563 R 13508, o ewl Cordesta seih Pkt f yoansed lo contact lh ouslosas |

LtEnt!rln 10 Bob: Wiga # Eowr irvroicws for Cuisl oo " “i‘mhun- | [
17 | Waicon Lowraar Tl -
23 . Bria Linceshdl AL
Fwre LTS oF Woaed
Conar it 5 Baich Hear s -

A - Blastesth Dhsi

Custpanes panbes D Aodesiy
Guspres_IT e _fio Enpdgpss_ 1D repae_ Db [ate Parareny Rer rwvpae Due Do CLISTONER EMPLOYEE
o 020 BT 00 1812081 1baristl £y e
13817 HENL2] 0300 11737300 1197 B E
134T BN 47 1831208 11124883 11'..1.|.E"-‘:| Erity oW E
10T HEMEE1 £l 1L 1 I.-..-‘?.-E!G'_' B
13T 1253 kL 113493681 1L 122573881 B =

Figure 19-11: A parameterized query returns all invoices for customer 12037.

Executing Stored Procedures from the Entity Data Model

The Entity Framework permits you to execute those stored procedures that you
selected when you created your entity data model, as well as those that you have added
later on. (Each of these stored procedures must also be imported, as described earlier in
this chapter.)

The execution of the stored procedure named SQLGet10Percent is demonstrated in the
code associated with the button labeled Show 10% of Invoices. Since the stored
procedure returns a collection of strings, in the form of a generic ObjectResult, the return
value can be bound to a control that accepts collections, which in this case is a list box.

The following code shows the Click event handler for the button labeled Show 10% of
Invoices:

private void btnShowlOPercent Click(object sender, EventArgs e)
{
if (tbCustNumber2.Text.Equals (String.Empty))
{
MessageBox.Show ("Enter a customer number");
return;
}
int custNo;
if (! int.TryParse (tbCustNumber2.Text, out custNo))

{
MessageBox. Show (tbCustNumber2.Text + " is not a number");

24 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

return;

try
{

lbInvoices.DataSource =
invoiceContext.SQLGet10Percent (custNo) ;

}

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;
}
}

As in the preceding code example, once the code has verified that a customer number
has been entered, that value is passed to the SQLGet10Percent method of the entity
context (this method was created when you imported the function). The resulting value is
then bound to the list box.

Note: If you need to execute Advantage system stored procedures from your .NET
application, attach to your data dictionary using the Advantage Data Provider, and then
use an AdsCommand object to execute your EXECUTE PROCEDURE queries.
Alternatively, create your own SQL stored procedure that calls the system stored
procedure you are interested in, and then import your SQL stored procedure into your
entity data model.

Reading and Writing Data

One of the more interesting aspects of the .NET Entity Framework is that it takes
responsibility for writing changes made to your entity objects back to the underlying
storage. This provides the advantage of relieving you of the mundane details associated
with your underlying data organization. On the other hand, since it is the classes of the
NET Entity Framework that generate the delete, insert, and update statements that will be
executed on your data, you cannot take advantage of query optimizations.

In short, once you obtain data in the form of an EntityObject from your entity data
model's ObjectContext, any changes made to the properties of the EntityObject are
tracked. If you then call the SaveChanges method of the ObjectContext, the changes are
persisted back to your database.

The changes to your entity objects can be made either programmatically or through
bound controls. For example, you can select one or more records from your database
through a LINQ query. You can then change the data in the query result, after which a
call to SaveChanges will write those changes to your underlying database.

Alternatively, you can retrieve data from a LINQ query and bind that result to two or
more visual controls that your end user can interact with. If the end user entered,
modified, or deleted data using those controls, a subsequent call to SaveChanges will
write those changes to your database.

Chapter 19: ADS and the .NET Entity Framework 25

The use of bound controls to edit data is demonstrated on the Click event handlers of
the Get Address and Set Address buttons on the main form. When Get Address is clicked,
the address of the specified customer is bound to the text box named tbCustomerAddress.
If changes are made to the contents of this text box, subsequently clicking the button
labeled Set Address calls the SaveChanges method of the object context.

Actually, the code is slightly more involved, since runtime binding is performed. Both
of the Click event handlers use a helper function named BindingPosition, which returns
the position of a named property binding for a given control, or -1 if the control does not
have a data binding on that property. The Get Address button uses this function to test for
the presence of the data binding, removing it if it already exists (otherwise an error might
be generated when a new binding is created). The Set Address button uses this function to
ensure that a data binding already exists (which indicates that an address was retrieved,
and can now be saved).

The following code shows the BindingPosition helper function, as well as the Get
Address and Set Address Click event handlers:

private int BindingPosition(Control control, string propertyName)
{

for (int 1 = 0; 1 < control.DataBindings.Count; i++)

{

if (control.DataBindings[i].PropertyName.Equals (propertyName))
return 1i;
}
return -1;

}

private void btnGetAddress Click(object sender, EventArgs e)
{
//I1f the address field is already data bound, remove the binding
int bindingPosition = this.BindingPosition (tbCustomerAddress, "Text");
if (bindingPosition >= 0)
{
tbCustomerAddress.DataBindings.RemoveAt (bindingPosition) ;
}
// Verify that a valid customer number has been entered
Int32 custNo;
if (! Int32.TryParse (tbCustNumberl.Text, out custNo))
{
MessageBox.Show (tbCustNumberl.Text + " is not a number");
return;
}
//define a query that selects a customer based on
//the entered value
var customerQuery = from c in invoiceContext.CUSTOMERS
where (c.Customer ID == custNo)
select c;
try
{
//get the result
bindingSourcel.DataSource =

26 Advantage Database Server: A Developer's Guide, 2nd Edition, Jensen and Anderson

((ObjectQuery) customerQuery) .Execute (MergeOption.AppendOnly) ;
//bind the result to the text property
tbCustomerAddress.DataBindings.Add (new Binding ("Text",

bindingSourcel, "Address")):;

}

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;
}
}

private void btnSetAddress Click(object sender, EventArgs e)

{
if (this.BindingPosition (tbCustomerAddress, "Text") < 0)

{

MessageBox.Show ("Get an address before trying to set it");
return;

try
{

invoiceContext.SaveChanges () ;

}

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;

}

Navigational and Administrative Operations with the
.NET Entity Framework

Most of the data access mechanisms discussed in this section of the book have
supported some form of navigation. By navigation, we are specifically speaking about
server-side, index-based navigation, such as seeks, filters, scopes and ranges, and
navigating from one record to another.

As far as the .NET Entity Framework is concerned, these are not Advantage
operations. Specifically, the NET Entity Framework provides you with a conceptual
model that represents an abstraction of your data. This model does not expose indexes
from your underlying database structures, and therefore, the concept of index-based
operations are absent.

On the other hand, there is the concept of record-by-record navigation in the NET
Entity Framework. For example, the returned records associated with the EMPLOYEE
table were navigated in the following code segment, which was discussed earlier in this
chapter:

var employeeQuery = from emp in invoiceContext.EMPLOYEEs
orderby emp.Employee Number
select emp;

try

{

Chapter 19: ADS and the .NET Entity Framework 27

//Add data about each employee to the list box
foreach (var m in employeeQuery)

{
1bEmployees.Items.Add (String.Format ("{0} : {1} {2}",
m.Employee Number, m.First Name, m.Last Name));

}

Likewise, Entity SQL provides you with an EntityDataReader class, which can also be
used to perform forward-only record-by-record navigation. In both cases, this navigation
is limited, and is not really what we were referring to as navigation in the other chapters
in this section.

On the other hand, the .NET Entity Framework does support a notion of navigation
that is different from what we have been talking about. This navigation involves the
associations found in the entity data model. For example, because of the relationship
between the CUSTOMER table and the INVOICE table defined in the entity data model,
the .NET Entity Framework navigation recognizes that when you are referring to a
particular customer object, there is an associated object representing the invoices for that
particular customer.

These relationships are particularly useful when you need to work with your data with
respect to their associations. For example, they make it very easy to display a grid that
contains all of the invoices for a currently selected customer, and to make changes to
those invoices.

Once again, however, this is not what we mean by navigation when working with
Advantage. In fact, with respect to the .NET Framework, if you really want navigation,
you should use the Advantage Data Provider and its powerful AdsExtendedReader, as
described in chapter 18, ADS and ADO.NET. The AdsExtendedReader gives you bi-
directional navigation, server-side filters, and scopes, all powered by the indexes of your
database.

With respect to administrative tasks, such as creating new tables, adding users, and
changing the properties of the objects of your data dictionary, the limitations of the .NET
Entity Framework are even more pronounced. Specifically, unless you specifically create
custom stored procedures that expose administrative functionality, and import those into
your entity data model, you cannot perform administrative tasks.

Here again, however, this is not really a problem. All you need to do is to use the
Advantage Data Provider directly, and you have access to all of the system tables, system
stored procedures, and all other features available through Advantage SQL. Refer to the
section "Administrative Operations with ADS and ADO.NET" in Chapter 18 ADS and
ADO.NET for information on performing administrative tasks using the Advantage Data
Provider.

