
Chapter 21: ADS and Java 1

Chapter 21
ADS and Java

Note: This chapter accompanies the book Advantage Database Server: A Developer's
Guide, 2nd Edition, by Cary Jensen and Loy Anderson (2010, ISBN: 1453769978). For
information on this book and on purchasing this book in various formats (print, e-book,
etc), visit: http://www.JensenDataSystems.com/ADSBook10

This chapter provides you with examples of using the Advantage JDBC Driver with
the JDBC classes to perform a wide range of common data-related tasks—using the Java
language in general, and Borland's JBuilder in particular. As is the case with the other
chapters in Part III, this discussion assumes that you are already familiar with Java
programming.

ADS and Java
JDBC (Java database connectivity) is the core technology for accessing data from Java

applications, applets, and servlets. Furthermore, using the JDBC Connector, available
from Sun Microsystems, you can use this JDBC driver with any J2EE-compliant server.
The Advantage JDBC Driver, named ADSDriver, is located in the
com.extendedsystems.jdbc.advantage namespace. Once you have registered this driver
and obtained a connection from the DriverManager, you access your Advantage data
using the classes and interfaces of the java.sql namespace.

The Advantage JDBC Driver is a class 4 JDBC driver. Unlike class 1, class 2, and
class 3 JDBC drivers, a class 4 driver requires no additional libraries, beyond the Java
driver itself, to connect to the underlying data. With the Advantage JDBC Driver, the
connection to ADS is accomplished using sockets. Unlike the other Advantage data access
mechanisms, the Advantage JDBC Driver does not require the services of the Advantage
Client Engine (ace32.dll and libace.so are the ACE libraries for Windows and Linux,
respectively).

Note: Class 4 JDBC drivers connect directly to a server without requiring the installation
of client drivers. Consequently, you can only use the Advantage JDBC Driver with ADS
(since ALS is not a server).

The Advantage JDBC Driver communicates with ADS using TCP/IP port 6262 by
default. If you need to communicate with ADS using a different port number on the
server, you must change the server configuration. See the Advantage help for information

2 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

on how to configure your TCP/IP (transmission control protocol/Internet protocol) port
number for the version of the ADS server that you are using.

Before you can use the Advantage JDBC Driver, you must install the adsjdbc.jar file
and add it to your CLASSPATH environment variable. Java uses CLASSPATH to locate
Java classes and other resources at runtime. The Advantage JDBC Driver installation will
automatically install the JAR file. Depending on which environment you install the driver
on, you may have to add the JAR file location to your CLASSPATH variable manually.

This chapter shows you how to access ADS using the Advantage JDBC Driver. This
discussion is divided into three major sections. The first section describes common tasks,
such as connecting to ADS, executing queries, and calling stored procedures. The second
section shows you how to perform basic navigation with JDBC, and the third section
demonstrates several basic administrative tasks, such as creating tables and granting rights
to them.

The use of the Advantage JDBC Driver is demonstrated in this chapter using Borland's
JBuilder, a popular Java IDE (integrated development environment). Figure 21-1 shows
the AdsJava.jpx project opened in JBuilder 2006, with the public JFrame class (named
MainFrame) displayed in the JBuilder designer.

Figure 21-1: The MainFrame JFrame class in the JBuilder designer

Note: This same project can be created with almost any version of Java. Many earlier
versions of JBuilder can also be used, as well as Java projects created with other
development environments.

Chapter 21: ADS and Java 3

Code Download: The sample code in this chapter can be found in the JBuilder project
named AdsJava.jpx, available with this book's code download (see Appendix A).

Even if you do not have a copy of JBuilder, you can still explore this project using the
JDK (Java Development Kit) available from Sun Microsystems. Simply compile the two
Java source files named Application1.java and MainFrame.java using javac.exe, the Java
compiler. Once you have compiled these .java files into byte-code class files, launch the
application by running the Application1.class file using java.exe, the Java runtime
launcher. The Application1 class contains the public, static main method entry point.

Performing Basic Tasks with ADS and Java
This section describes some of the more common tasks that you can perform with Java

and the Advantage JDBC Driver. These include connecting to a data dictionary, opening a
table, executing a query, using a parameterized query, and executing a stored procedure.

Connecting to Data
You connect to a data dictionary or to a directory in which free tables are located by

calling the getConnection method of the DriverManager. The getConnection method takes
a connection string, which must be prefaced by the driver manager class that you want to
get the connection for. For a connection to ADS, this prefix is
jdbc:extendedsystems:advantage:.

Prior to calling getConnection, you must have instantiated the Advantage JDBC
Driver. This is done by calling the forClass method of the Class class, passing the name of
the Advantage JDBC Driver as an argument.

Because numerous event handlers associated with the MainFrame class use this
connection, a variable of type Connection (a JDBC class) is declared in the MainFrame's
class declaration, which places this variable in scope of all event handlers that need it.
This variable declaration and several additional JDBC class variables that are used in two
or more event handlers in this project are shown here:

public class MainFrame extends JFrame {
 Connection conn;
 Statement stmt;
 PreparedStatement prepStmt;
 //additional declarations

The Connection variable (conn) in the preceding segment is assigned a connection
from a private method that is called from the MainFrame class constructor. This method,
databaseInit, is shown in the following code segment:

private void databaseInit() throws Exception{

4 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Class.forName
 ("com.extendedsystems.jdbc.advantage.ADSDriver");
 conn =
 DriverManager.getConnection("jdbc:extendedsystems:" +
 "advantage://server:6262/share/adsbook/"+
 "demodictionary.add;user=adsuser;password=password");
 stmt = conn.createStatement();
 prepStmt = conn.prepareStatement("SELECT * FROM INVOICE "+
 "WHERE [customer id] = ?");
}

As you can see from the preceding method, forName is passed the name of the class of
the Advantage JDBC Driver, which instantiates the driver. When the getConnection
method of the DriverManager is called, it locates the instantiated driver by means of the
prefix in the connection string.

In addition to containing the prefix for the Advantage JDBC Driver, this connection
includes a URL (uniform resource locator) that points to the TCP/IP port on the machine
named server where the data is located. This URL also includes an optional data location,
identified by a share on that server (named share in this instance), and a qualified path to
the data dictionary. Two additional parameters, the user name and password, are passed in
this connection string as well.

Note: If an exception is raised when you attempt to connect, verify that your URL is
correct and try again. You should also ensure that all clients on the same machine use a
remote connection (since the Java driver only uses remote).

Because this connection string refers to the DemoDictionary data dictionary, and this
dictionary requires logins, this particular connection string contains all of the essential
parameters needed to connect to this database. Additional parameters could have been
passed in this connection string as name/value pairs, where an equal sign separates the
name and value. As you can see in the preceding connection string, when the connection
string contains two or more name/value pairs, semicolons separate them. The full list of
the optional connection string parameters is shown in Table 21-1.
Parameter Description
Catalog If the data directory or data dictionary path is not provided in the

connection URL, set it to the qualified name of the data dictionary or
the file location on the specified server where the free tables are
located.

CharType Identifies the character set used by the server. Can be set to ansi or
oem. The default is ansi.

LockType Identifies the type of locking to be used by ADS. Can be set to
compatibility or proprietary. The default is proprietary.

Password If the data dictionary requires login, use this parameter to submit the
user's password.

QueryTimeout The maximum number of second after which a SQL statement that
has not completed will be aborted.

Chapter 21: ADS and Java 5

ShowDeleted Set to true to include deleted records in DBF files. Set to false to

suppress deleted records. The default is false.
TableType Used to identify the type of table when connecting to free tables.

This parameter can be set to adt, cdx, or ntx. The default is adt. This
property is not used when you connect to a data dictionary.

User If the data dictionary requires login, use this parameter to submit the
user's user name.

Table 21-1: The Advantage Java JDBC Driver Connection String Parameters

Executing a Query
You can execute a query against ADS by calling any one of a number of methods of a

java.sql.Statement instance, including execute, executeQuery, and executeUpdate. The
execute method returns True if the statement returns a result, False if it does not, and
throws an exception if the statement fails. The execute method is best when you do not
know ahead of time if the statement returns a result set. Call executeQuery when you
know that a result set will be returned, and executeUpdate when you know that one will
not be returned.

The following event handler demonstrates the execution of a query that returns a result
set. This event handler is associated with the Execute SELECT button (shown in Figure
21-1):

void executeSelect_actionPerformed(ActionEvent e) {
 try {
 ResultSet rs = stmt.executeQuery(selectText.getText());
 if (isRSEmpty(rs)) {
 JOptionPane.showMessageDialog(this,
 "No records in result set");
 return;
 }
 jTable1.setModel(new ResultTableModel(rs));
 }
 catch (Exception e1) {
 System.err.println(e1.getMessage());
 }
}

Since this is the first event handler from this project that we've inspected, there are two
characteristics that need to be introduced—specifically, the isRSEmpty method and the
use of the ResultTableModel class. Both of these are declared in the MainFrame.java file.

The isRSEmpty method is called by many of the event handlers in this application to
determine whether or not there are records in the ResultSet returned by executeQuery.
This method was added to the MainFrame class declaration as a public static method. The
following is the implementation of this method:

public static boolean isRSEmpty(ResultSet rs) {
 try {
 return ! rs.first();
 }

6 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 catch (Exception e1) {
 System.err.println(e1.getMessage());
 return false;
 }
}

The second item of interest is the class ResultTableModel. This class extends the
abstract class AbstractTableModel, and it is used to create a model that can be used by the
JTable class to display the contents of the result set. (Java swing classes employ a model-
view architecture. The view is supplied by the visual component, and the model is
responsible for handling the data.) At a minimum, ResultTableModel must override
getColumnCount, getRowCount, and getValueAt. In this case, getColumnName is also
overridden.

The following code implements the ResultTableModel class:

class ResultTableModel
 extends javax.swing.table.AbstractTableModel {
 Object obj [] [];
 int rows, columns;
 ResultSetMetaData rsMeta;

 public ResultTableModel (ResultSet rs) {
 try {
 if (rs == null) {
 rows = 0;
 columns = 0;
 obj = new Object[0][0];
 return;
 }
 rsMeta = rs.getMetaData();
 //get column count
 columns = rsMeta.getColumnCount();
 //calculate number of rows
 rows = 0;
 rs.first();
 do {
 rows++;
 } while (rs.next());
 //set array dimension
 obj = new Object [rows][columns];
 //load data
 rs.first();
 rows = 0;
 do {
 for (int j = 0; j <= (columns-1); j++) {
 obj[rows][j] = rs.getString(j+1);
 }
 rows++;
 } while (rs.next());
 } catch (Exception e1) {
 System.out.println(e1.getMessage());
 }
 }

 public int getColumnCount() {

Chapter 21: ADS and Java 7

 return columns;
 }

 public int getRowCount() {
 return rows;
 }

 public String getColumnName(int col) {
 String res = "";
 if (rsMeta == null) {
 return res;
 }
 try {
 res = rsMeta.getColumnName(col+1);
 }
 catch (Exception e1) {
 System.out.println(e1.getMessage());
 }
 return res;
 }

 public Object getValueAt(int row, int col) {
 return obj[row][col];
 }
} //ResultTableModel class

As you can see in this code, the constructor of ResultTableModel is passed the
ResultSet. This ResultSet is used to obtain a ResultSetMetaData object, which is then
used to determine the number of columns in the ResultSet. This ResultSetMetaData object
is also used to obtain the column names from within the getColumnName method.

Next, the ResultSet is navigated in order to count how many records the ResultSet
contains. Finally, a two-dimensional array of Object is declared and populated with the
rows and columns of the ResultSet.

Admittedly, this code is somewhat inefficient, in that it necessitates the retrieval of all
of the records in the ResultSet, which is a time-consuming task when many records are
involved. Consequently, this is not the type of TableModel that would be appropriate for
every application. But for this sample Java project, it works just fine.

ResultTableModel is used to populate the JTable instance, a grid control that appears
in the JFrame. Figure 21-2 shows this JTable populated with the results of a SQL
SELECT statement.

8 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Figure 21-2: The JTable obtains its data from ResultTableModel

Using a Parameterized Query
Instead of using a Statement object, you use a PreparedStatement object when you

need to execute a parameterized query. You can create a PreparedStatement object by
calling the prepareStatement method of a Connection object, passing the parameterized
query as an argument.

Before executing the PreparedStatement, you must call one of its setter methods for
each parameter in the query. Which setter method you call depends on the data type of the
parameter. If the parameter is a String, you call setString. On the other hand, if the
parameter is an Integer, you call setInt.

The PreparedStatement was created in the databaseInit method shown earlier in this
chapter. Data is bound to the single parameter and the query is executed from the
following event handler, which is associated with the Show Invoices button (shown in
Figure 21-1):

void showInvoiceBtn_actionPerformed(ActionEvent e) {
 try{
 prepStmt.setInt(1,
 Integer.parseInt(paramText.getText()));
 ResultSet rs = prepStmt.executeQuery();
 if (isRSEmpty(rs)) {
 JOptionPane.showMessageDialog(this,
 "No records in result set");

Chapter 21: ADS and Java 9

 return;
 }
 jTable1.setModel(new ResultTableModel(rs));
 }
 catch (Exception e1) {
 System.err.println(e1.getMessage());
 }
}

Reading and Writing Data
You access individual columns in a ResultSet by calling one of its getter methods. All

ResultSet getter methods are overloaded. You can identify a column either by ordinal
position or by name.

Which getter method you call depends on the data type of the column you are reading.
For example, you call getString in order to read a column containing text, and getBoolean
to read a logical column.

If the result set is based on a live (dynamic) cursor, you can change its data and apply
the change to the underlying Advantage table. You write to a column of a ResultSet by
calling one of its setter methods. Like getter methods, ResultSet setter methods are
overloaded, taking either the ordinal position of a field or the field name, in addition to the
value you are writing to the field.

Once you have written to one or more fields of an updatable ResultSet record, you
apply the changes to the underlying table by calling the ResultSet's updateRow method.

The following event handler, associated with the Get Address button (shown in Figure
21-1), demonstrates how to read a field from a ResultSet:

void getAddressBtn_actionPerformed(ActionEvent e) {
 PreparedStatement getCustStmt;
 if (custNoText.getText() == "") {
 System.out.println("Enter a customer ID");
 return;
 }
 try {
 getCustStmt = conn.prepareStatement(
 "SELECT * FROM CUSTOMER WHERE [customer id] = ?");
 getCustStmt.setInt(1,
 Integer.parseInt(custNoText.getText()));
 ResultSet rs = getCustStmt.executeQuery();
 if (isRSEmpty(rs)) {
 JOptionPane.showMessageDialog(this,
 "No records in result set");
 jTable1.setModel(new ResultTableModel(null));
 return;
 }
 oldAddressText.setText(rs.getString("Address"));
 jTable1.setModel(new ResultTableModel(rs));
 }
 catch (Exception e1) {
 System.err.println(e1.getMessage());

10 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 }
}

The next event handler, associated with the Set New Address button (shown in Figure
21-1), demonstrates writing to a field and saving the change to ADS:

void setAddressBtn_actionPerformed(ActionEvent e) {
 PreparedStatement getCustStmt;
 if (custNoText.getText() == "") {
 System.out.println("Enter a customer ID");
 return;
 }
 try {
 getCustStmt = conn.prepareStatement(
 "SELECT * FROM CUSTOMER WHERE [customer id] = ?");
 getCustStmt.setInt(1,
 Integer.parseInt(custNoText.getText()));
 ResultSet rs = getCustStmt.executeQuery();
 if (isRSEmpty(rs)) {
 JOptionPane.showMessageDialog(this,
 "No records in result set");
 return;
 }
 rs.updateString("Address", newAddressText.getText());
 rs.updateRow();
 }
 catch (Exception e1) {
 System.err.println(e1.getMessage());
 }
}

Calling a Stored Procedure
Calling a stored procedure is no different than executing any other query. If your

stored procedure does not require input parameters, you use a Statement instance. You use
a PreparedStatement instance if there are one or more input parameters. If the stored
procedure returns one or more records, you invoke the executeQuery method of the
Statement or PreparedStatement object, and you invoke the execute or the executeUpdate
methods when the stored procedure does not return records.

Invoking a stored procedure that takes one input parameter is demonstrated by the
following code associated with the actionPerformed event handler for the Show 10% of
Invoices button (shown in Figure 21-1). The stored procedure referenced in this code is
the SQL stored procedure created in Chapter 7. If you did not create this stored procedure,
but created one of the other stored procedures described in that chapter, substitute the
name of the stored procedure object in your data dictionary in the EXECUTE
PROCEDURE string, like this:

void callStoredProcBtn_actionPerformed(ActionEvent e) {
 PreparedStatement getCustStmt;
 if (custNoText.getText() == "") {
 System.out.println("Enter a customer ID");
 return;
 }

Chapter 21: ADS and Java 11

 try {
 getCustStmt = conn.prepareStatement(
 "EXECUTE PROCEDURE Get10PercentSQL(?)");
 getCustStmt.setInt(1,
 Integer.parseInt(paramText.getText()));
 ResultSet rs = getCustStmt.executeQuery();
 if (isRSEmpty(rs)) {
 jTable1.setModel(new ResultTableModel(null));
 JOptionPane.showMessageDialog(this,
 "No records in result set");
 return;
 }
 jTable1.setModel(new ResultTableModel(rs));
 }
 catch (Exception e1) {
 JOptionPane.showMessageDialog(this,
 e1.getMessage());
 }
}

Navigational Actions with ADS and Java
Unlike Delphi and ADO-based Advantage applications, which support a wide range of

navigational operations, JDBC supports only simple navigation. Specifically, the
ResultSet class permits you to navigate forward through the records of the result set, and
if the cursor is bidirectional, you can move forward and backward using methods with
names such as first, next, last, and previous. The use of simple forward navigation is
demonstrated in the following section.

Scanning a Result Set
Scanning is the process of sequentially reading every record in a result set. Although

scanning is a common task, it is important to note that it necessarily requires the client
application to retrieve all of the records in the result set. This is not a problem when few
records are involved, but if a large number of records are being scanned, network
resources may be taxed.

Tip: If you must scan a large number of records, implement the operation using a stored
procedure. When ADS and the data are located on the same server, scanning from a
stored procedure installed on ADS requires no network resources. Creating stored
procedures is covered in Chapter 7, "Creating Stored Procedures."

The following code demonstrates scanning. It is associated with the actionPerformed
event handler of the List Products button (shown in Figure 21-1), and it navigates the
entire PRODUCTS table, assigning data from each record to the productList JListBox:

void listProductsBtn_actionPerformed(ActionEvent e) {
 DefaultListModel listModel =
 new javax.swing.DefaultListModel();

12 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 try {
 ResultSet rs = stmt.executeQuery(
 "SELECT * FROM PRODUCTS");
 rs.first();
 do {
 listModel.addElement(rs.getString(1) + " " +
 rs.getString(2));
 } while (rs.next());
 productList.setModel(listModel);
 }
 catch (Exception e1) {
 System.err.println(e1.getMessage());
 }
}

Note that the do-while loop in the preceding event handler could also have been
written as follows using a while-do loop:

while (rs.next()) do {
 listModel.addElement(rs.getString(1) + " " +
 rs.getString(2));
}

While the behavior of these two control structures is equivalent, there is a potential
drawback to the second version, the while-do loop. Specifically, if the ResultSet has been
navigated in any way prior to the while-do loop, the first record will be skipped. The do-
while statement preceded by a call to the first method, by comparison, always processes
every record in the ResultSet, whether or not the ResultSet has been navigated previously.

Administrative Operations with ADS and Java
While ADS requires little in the way of periodic maintenance to keep it running

smoothly, many applications need to provide administrative functionality related to the
management of users, groups, and other objects.

This section is designed to provide you with insight into exposing administrative
functions in your client applications. Two related, yet different, operations are
demonstrated here. In the first, a new table is added to the database and all groups are
granted access rights to it. This operation requires that you establish an administrative
connection, or a user connection with the appropriate GRANT rights. The second
operation involves permitting individual users to modify their own passwords. Especially
in the security-conscious world of modern database management, this feature is often
considered an essential step to protecting data.

Creating a Table and Granting Rights to It
The AdsJava project permits a user to enter the name of a table that will be created in

the data dictionary, after which all non-default groups will be granted rights to the table.
This operation is demonstrated in the following event handler, which is associated with
the actionPerformed event of the Create Table and Grant Rights button (shown in Figure
21-1):

Chapter 21: ADS and Java 13

void createTableBtn_actionPerformed(ActionEvent e) {
 boolean found = false;
 Connection adminconn;
 Statement adminstmt;
 Statement grantstmt;
 ResultSet rs;
 String tn = tableNameText.getText();
 //Check for semicolon hack
 if (! (tn.indexOf(";") == -1)) {
 JOptionPane.showMessageDialog(this,
 "Table name may not contain a semicolon");
 return;
 }
 if (tableNameText.getText().equals("")) {
 JOptionPane.showMessageDialog(this,
 "Please enter a table name");
 return;
 }
 try {
 adminconn = DriverManager.getConnection(
 "jdbc:extendedsystems:advantage://server:6262/share"+
 "/adsbook/"demodictionary.add;" +
 "user=adssys;password=password");
 adminstmt = adminconn.createStatement();
 rs =
 adminstmt.executeQuery(
 "SELECT NAME FROM system.tables");
 String tabName;
 if (! isRSEmpty(rs)) {
 rs.first();
 do {
 tabName = rs.getString("Name");
 if (tabName.equalsIgnoreCase(tn)) {
 found = true;
 break;
 }
 } while (rs.next());
 }
 if (found) {
 JOptionPane.showMessageDialog(this,
 "Table already exists. Cannot create");
 return;
 }
 adminstmt.executeUpdate("CREATE TABLE " + tn +
 "([Full Name] CHAR(30)," +
 "[Date of Birth] DATE," +
 "[Credit Limit] MONEY, " +
 "Active LOGICAL)");
 rs = adminstmt.executeQuery(
 "SELECT * FROM system.usergroups " +
 "WHERE NAME NOT LIKE 'DB:%'");
 if (isRSEmpty(rs)) {
 JOptionPane.showMessageDialog(this,
 "No groups to grant rights to");
 return;
 }
 grantstmt = adminconn.createStatement();
 rs.first();

14 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 do {
 grantstmt.executeUpdate("GRANT ALL ON [" + tn + "]" +
 " TO [" + rs.getString("Name") + "]");
 } while (rs.next());
 JOptionPane.showMessageDialog(this, "The " +
 tn + " table " +
 "has been created, with rights granted to all groups");
 } catch (Exception e1) {
 System.out.println(e1.getMessage());
 }
}

This event handler begins by verifying that the table name does not include a
semicolon, which could be used to introduce a SQL injection attack. Since this value
represents a table name, using a parameterized query (the common method used to avoid
injection attacks) is not an option.

Next, this code verifies that the table does not already exist in the data dictionary.
Once that is done, a new connection is created using the data dictionary administrative
account. This connection is then used to call CREATE TABLE to create the table, and
then to call GRANT for each non-default group returned in the system.usergroups table.

Note: The administrative user name and passwords are represented by string literals in
this code segment. This was done for convenience, but in a real application you would
either ask for this information from the user, or you would obfuscate this information so
that it could not be retrieved.

Changing a User Password
A user can change the password on their own connection, if you permit this. In most

cases, only when every user has a distinct user name would you expose this functionality
in a client application. When multiple users share a user name, this operation is usually
reserved for an application administrator.

The following event handler, associated with the Change Password button (shown in
Figure 21-1), demonstrates how you can permit a user to change their password from a
client application:

void changePasswordBtn_actionPerformed(ActionEvent e) {
 String userName;
 String oldPass;
 String newPass1;
 String newPass2;
 try {
 ResultSet rs = stmt.executeQuery("SELECT USER() as " +
 "Name FROM system.iota");
 rs.first();
 userName = rs.getString("Name");
 oldPass = JOptionPane.showInputDialog(this,
 "Enter your current password");
 if (oldPass.equals("")) {

Chapter 21: ADS and Java 15

 return;
 }
 try {
 Connection tempcon =
 DriverManager.getConnection(
 "jdbc:extendedsystems:advantage://server:6262/" +
 "share/adsbook/demodictionary.add;user=" +
 userName +";password=" + oldPass);
 }
 catch (Exception e1) {
 JOptionPane.showMessageDialog(this,
 "Invalid password. Cannot change password");
 return;
 }
 //Check for semicolon hack
 newPass1 = JOptionPane.showInputDialog(this,
 "Enter your new password");
 if (! (newPass1.indexOf(";") == -1)) {
 JOptionPane.showMessageDialog(this,
 "Password may not contain a semicolon");
 return;
 }
 newPass2 = JOptionPane.showInputDialog(this,
 "Confirm your new password");
 if (!newPass1.equals(newPass2)) {
 JOptionPane.showMessageDialog(this,
 "Passwords did not match. " + "
 Cannot change password");
 return;
 }
 stmt.executeUpdate("EXECUTE PROCEDURE "
 +"sp_ModifyUserProperty('"+
 userName + "', 'USER_PASSWORD', '" + newPass1 + "')");
 JOptionPane.showMessageDialog(this,
 "Password successfully changed. " +
 "New password will be valid next time you connect");
 } catch (Exception e1) {
 System.out.println(e1.getMessage());
 }
}

A number of interesting tricks are used in this code. First, the user name is obtained by
requesting the USER scalar function from the system.iota table. USER returns the user
name on the connection through which the query is executed. Next, the user is asked for
their current password, and the user name and password are used to attempt a new
connection, which, if successful, confirms that the user is valid.

Finally, the user is asked for their new password twice (for confirmation). If all is well,
the sp_ModifyUserProperty stored procedure is called to change the user's password. As
the final dialog box displayed by this event handler indicates, this password will be valid
once the user terminates all connections on this user account.

16 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Note: If you run this code, and change the password of the adsuser account, you should
use the Advantage Data Architect to change the password back to password. Otherwise,
you will not be able to run this project again, since the password is hard-coded into the
connection string.

	ADS and Java
	Performing Basic Tasks with ADS and Java
	Connecting to Data
	Executing a Query
	Using a Parameterized Query
	Reading and Writing Data
	Calling a Stored Procedure

	Navigational Actions with ADS and Java
	Scanning a Result Set

	Administrative Operations with ADS and Java
	Creating a Table and Granting Rights to It
	Changing a User Password

