
Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 1

Chapter 22
ADS and MDAC, OLE DB, ADO, and Visual
Basic

Note: This chapter accompanies the book Advantage Database Server: A Developer’s
Guide, 2nd Edition, by Cary Jensen and Loy Anderson (2010, ISBN: 1453769978). For
information on this book and on purchasing this book in various formats (print, e-book,
etc), visit: http://www.JensenDataSystems.com/ADSBook10

Note: Visual Basic, though still used widely, has not seen an update since 1998 (from a
development standpoint, Visual Basic for .NET is a separate language, one more closely
aligned to the .NET framework). As a result, this chapter appears as it did in previous
editions of this book, with only minor modifications.

We want to thank Chris Franz and Lance Schmidt from the Advantage team at Sybase.
Chris provided invaluable help with all of the Visual Basic examples used here and in
previous editions of this book. Lance also gave us technical assistance on Visual Basic.

ADO (ActiveX data objects) provides the API (application programming interface)
part of MDAC (Microsoft Data Access Components). MDAC is the implementation of
Microsoft’s Universal Data Access strategy, which is designed to provide a high-
performance, language-independent data access layer in the Windows operating system.

This chapter provides you with an introduction to MDAC, and ADO in particular.
Because ADO is language neutral, the examples presented in this chapter could have been
produced using any one of a wide variety of programming languages. Due to its
popularity, and heavy reliance on ADO for data access, we have chosen Visual Basic 6.

This chapter begins with a high-level introduction to ADO and OLE DB. It then
continues by showing you how to access your Advantage data using ADO.

ADS and MDAC, OLE DB, ADO, and Visual Basic
There are three layers to Universal Data Access, Microsoft’s ambitious initiative to

build a data access layer into the Windows operating system. At the lowest layer are data-
providing applications and services. In most cases, such as with Advantage, these are

2 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

client/server database servers. But in practice, they can be almost any type of application
imaginable. Nonetheless, the one characteristic that all data providers and services share is
that they provide access to information.

Above this lowest layer is OLE DB, which consists of a series of COM (component
object model) interfaces. OLE DB provides a layer of abstraction between the data
providers and the data consumers, which are your client applications in the traditional
client/server architecture.

COM interfaces are simply API templates, which alone are useless unless they are
implemented by objects. This is where OLE DB providers come in. OLE DB providers
are the objects that implement the OLE DB interfaces, and which perform the physical
communication with the data-providing applications and services. In the MDAC scheme
of things, both OLE DB and OLE DB providers reside in this middle layer.

While it is conceivable for an application developer to program directly to the OLE
DB API, doing so would be both time-consuming and complicated. This is because OLE
DB, being a low-level interface, was not designed as a developer API. And this is where
the third and highest layer comes in, ADO.

ADO consists of a collection of ActiveX data objects that encapsulate calls to OLE
DB. By comparison to OLE DB, the ADO API is simple, providing client application
developers with convenient access to the data supplied by the data providers and services.

MDAC is normally available on all Windows machines (only Windows 95, which has
not been supported by Microsoft for some time, did not come with MDAC already
installed). Furthermore, the latest version of MDAC can be freely downloaded from
Microsoft’s Web site at http://msdn.microsoft.com/data/mdac/downloads/. The licensing
for MDAC specifically permits you to distribute it with your applications, but that is
rarely necessary (unless you are installing your applications on obsolete machines).

MDAC consists of all of the ActiveX data objects, as well as a collection of OLE DB
providers. The standard providers include the Microsoft Jet 4.0 OLE DB Provider, the
Microsoft OLE DB Provider for SQL Server, the Microsoft OLE DB Provider for Oracle,
and the Microsoft OLE DB Provider for ODBC, just to name a few.

There are two critical characteristics of Microsoft’s Universal Data Access that make
this an appealing data access solution. First, regardless of which OLE DB provider you
want to use, you access it through the one set of ActiveX data objects. They provide the
common API.

The second is that you are not limited to using just the standard OLE DB providers
that ship with MDAC. Any COM objects that correctly implement the necessary OLE DB
interfaces can be installed on a Windows computer and executed through ADO. The
Advantage OLE DB Provider is an example of such an implementation. After installing
the Advantage OLE DB Provider, which automatically registers this provider with COM,
you can use ADO to access your Advantage data.

There is one final issue that deserves mention before turning our attention to using
Advantage through ADO: client-side cursors versus server-side cursors. In ADO, when

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 3

you execute a command that returns a result set, you specify where the result set will
reside using the CursorLocation property of a Connection or Recordset object. If you set
CursorLocation to adUseClient, all records from the result set are downloaded from the
server and stored in-memory on the client workstation. By comparison, if you set
CursorLocation to adUseServer, the Advantage OLE DB Provider manages the access of
data using ADS, retrieving to the client only those records required by your application.
The default value of the CursorLocation property of Connection and Recordset objects is
adUseServer.

When you load your data into a client-side cursor, operations such as sorting, finding,
filtering, and the like are performed by the ADO client cursor engine, and do not involve
ADS until you are ready to write changes back to the server. By comparison, when you
use server-side cursors, you are leveraging the power and performance of ADS in
operations that involve filters, indexes, seeks, and navigation. As a result, the examples
discussed in this chapter make use of server-side cursors. If you are interested in learning
more about client-side cursors and their features, refer to a book on ADO.

Note: Because client-side cursors require that all records be downloaded from the server
into memory on your workstation before you can work with your data, you may experience
significant delays when loading large result sets using client-side cursors. In most cases,
you will achieve excellent performance with ADS and server-side cursors, making them a
better solution—particularly when your result sets are large.

The remainder of this chapter shows you how to access Advantage using Visual Basic
6. These discussions are divided into three parts. The first part describes common tasks,
such as connecting to Advantage and accessing data. The second part shows you how to
perform simple navigation using ADO. The third and final part demonstrates several basic
administrative tasks, such as creating tables and granting rights to them.

Code Download: The VB project VB_ADS.vbp can be found on this book’s code
download (see Appendix A).

All of the examples presented here can be found in the VB_ADO.vbp Visual Basic
project. Figure 22-1 shows the main form of this project in Visual Studio.

4 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Figure 22-1: The VB_ADO project in Visual Studio

Note: The VB_ADO project with the code download for this book was compiled with
MDAC 2.8. If you are not using MDAC 2.8, you will get an error when you first try to run
this project. If this happens, select Project | References. Use the displayed dialog box to
uncheck the Microsoft ActiveX Data Objects Library 2.8 (if necessary). Then, scroll to find
the version of the Microsoft ActiveX Data Objects Library that you want to use (this must
be version 2.1 or later), and add a checkmark to it. Click OK when you are done.

As is the case with all data access mechanisms described in Part III, the following
discussion of Advantage programming with Visual Basic touches on just a few of the
available techniques. For a more comprehensive discussion of ADO programming, you
may want to pick up a book on ADO programming.

If you are creating a new project that uses ADO, you must add a reference to the
Microsoft Data Access Objects library before you can use the Advantage OLE DB
Provider with Visual Studio. To do this, use the following steps:
1. From Visual Studio, select Projects | References. Visual Studio displays the

References dialog box as shown in Figure 22-2.
2. Scroll the Available References list until you see Microsoft ActiveX Data Objects

Library. Place a checkmark next to the version with the highest major and minor
version, as shown in Figure 22-2.

3. Click OK to close the References dialog box.

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 5

Figure 22-2: Adding a reference to the Microsoft Data Access Objects library

Performing Basic Tasks with Advantage and ADO
This section describes some of the more common tasks that you can perform with

ADO. These include connecting to a data dictionary, executing a query, using a
parameterized query, retrieving and editing data, and executing a stored procedure.

Connecting to Data
You connect to a data dictionary or a directory in which free tables are located using a

Connection object found in the ADODB namespace. At a minimum, you must provide the
Connection object with sufficient information to locate your data and configure how the
data should be accessed. This can be done either with the Parameters collection property
or the ConnectionString property. Both of these properties accept name/value pairs using
the parameters listed in Table 22-1. If you use the ConnectionString property, and use
more than one name/value pair, separate them with semicolons.
Parameter Description
CharType Set to the character set type for DBF files. Valid values are

ADS_ANSI and ADS_OEM. The default value is
ADS_ANSI.

Compression Set to ALWAYS, INTERNET, NEVER, or empty. If left
empty (the default), the ADS.INI file will control the
compression setting. This parameter is not used by ALS.

6 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

CommType The communication protocol to use to connect to ADS.

Under Windows and Linux, the default is UDP_IP. For
Novel Netware, the default is IPX. To use TCP/IP, set
CommType to TCP_IP.

Data Source The path to your free tables or data dictionary. If you are
using a data dictionary, you must include the data dictionary
filename in this path. It is recommended that this path be a
UNC path. Data Source is a required parameter.

DbfsUseNulls Set to TRUE to return empty fields from DBF files as NULL
values. If set to FALSE, empty fields are returned as empty
data values. The default is FALSE.

EncryptionPassword Set to an optional password to use for accessing encrypted
free tables. If using less than a 20-letter password, a
semicolon should be included directly after the password so
the Advantage OLE DB Provider knows when the password
ends. This parameter is ignored for data dictionary
connections.

FilterOptions Set to IGNORE_WHEN_COUNTING or
RESPECT_WHEN_COUNTING. When set to
IGNORE_WHEN_COUNTING, the RecordCount property
of a Recordset may not accurately reflect the number of
records in a result set. Set to
RESPECT_WHEN_COUNTING for accurate record counts.
Requesting accurate record counts can reduce performance
significantly, and should be used only if accurate counts are
needed. The default is IGNORE_WHEN_COUNTING.

IncrementUsercount Set to TRUE to increment the user count when the
connection is made. Set to FALSE to make a connection
without incrementing the user count. The default is FALSE.

Initial Catalog Optional name of a data dictionary if the data dictionary is
not specified in the Data Source parameter.

LockMode Set to ADS_PROPRIETARY_LOCKING or
ADS_COMPATIBLE_LOCKING to define the locking
mechanism used for DBF tables. Use
ADS_COMPATIBLE_LOCKING when your connection
must share data with non-ADS applications. The default is
ADS_PROPRIETARY_LOCKING.

Password When connecting to a data dictionary that requires logins, set
to the user’s password.

Provider This required parameter must be set to either Advantage OLE
DB Provider or Advantage.OLEDB.1.

SecurityMode Set to ADS_CHECKRIGHTS to observe the user’s network
access rights before opening files, or ADS_IGNORERIGHTS
to access files regardless of the user’s network rights. The
default is ADS CHECKRIGHTS. This property applies only

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 7

to free table connections.
ServerType Set to the type of ADS server you want to connect to. Use

ADS_LOCAL_SERVER, ADS_REMOTE_SERVER, or
ADS_INTERNET_SERVER. To attempt to connect to two
or more types, separate the server types using a vertical bar
(|). This is demonstrated in the ConnectionString shown later
in this chapter.

ShowDeleted Set to TRUE to include deleted records in DBF files. Set to
FALSE to suppress deleted records. The default is FALSE.

StoredProcedure
Connection

Set to TRUE if connecting from within a stored procedure.
When set to TRUE, the connection does not increment the
user count. The default is FALSE.

TableType Set to ADS_ADT, ADS_CDX, ADS_VFP, or ADS_NTX to
define the default table type. The default is ADS_ADT. This
parameter is ignored for data dictionary connections.

TrimTrailingSpaces Set to TRUE to trim trailing spaces from character fields. Set
to FALSE to preserve trailing spaces. The default is FALSE.

User ID If connecting to a data dictionary that requires logins, set to
the user’s user name.

Table 22-1: ADO Connection String Parameters

For any of the optional connection string parameters that you fail to provide, the
Advantage OLE DB Provider will automatically insert the default parameters.
Furthermore, instead of supplying a connection string with your connection information,
you can set the connection string to the following pattern:

FILE NAME=path\filename.udl

where path is the physical or UNC path to a directory in which a file with the .udl file
extension resides, and filename is the name of a UDL (universal data link) file. UDL files
are INI-style files that contain ADO connection information. Under the most recent
versions of Windows, UDL files are stored in:
C:\Program Files\Common Files\System\Ole DB\Data Links

You do not even need to know how a UDL file is structured to create one. Simply
create a new empty file in the preceding directory using the UDL file extension. Then,
using the Windows Explorer, right-click this filename and select Properties. Use the
displayed properties dialog box, shown in Figure 22-3, to configure the connection
information. At runtime, when ADO processes the connection string containing FILE
NAME=path\filename.udl, it will expand the connection string, populating it with the
definitions located in the UDL file.

8 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Figure 22-3: Setting the connection string properties using a UDL file

Because the Connection object that is used by this project must be used by a number of
subprocedures on the form, the AdsConnection variable and several other variables that
must be repeatedly referenced are declared as form-level variables. The following code
segment shows this declaration. Note also in the following code segment that the data
source location of the data dictionary is declared as a constant.

'Require explicit variable declarations
Option Explicit
Dim AdsConnection As ADODB.Connection
Dim AdsCommand As ADODB.Command
Dim AdsRecordset As ADODB.Recordset
Dim AdsParamQueryCommand As ADODB.Command
Dim AdsParamQueryRecordset As ADODB.Recordset
Dim AdsParameter As ADODB.Parameter
Dim AdminConnection As ADODB.Connection

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 9

Dim AdminCommand As ADODB.Command
Const DataPath = "\\server\share\ADSBook\DemoDictionary.add"

This OLE DB Connection, named AdsConnection, is created, configured, and opened
from the Load event of the form, along with several other Command, Recordset, and
Connection objects. The relevant portion of this subprocedure is shown in the following
code:

Private Sub Form_Load()
 On Error GoTo ErrorHandler
 Set AdsConnection = New ADODB.Connection
 Set AdsCommand = New ADODB.Command
 Set AdsRecordset = New ADODB.Recordset
 Set AdminConnection = New ADODB.Connection
 Set AdminCommand = New ADODB.Command
 'Setup the connection
 AdsConnection.ConnectionString = _
 "Provider=Advantage OLE DB Provider;" + _
 "Data Source=" + DataPath + ";user ID=adsuser;" + _
 "password=password;" + _
 "ServerType=ADS_LOCAL_SERVER | ADS_REMOTE_SERVER;" + _
 "FilterOptions=RESPECT_WHEN_COUNTING;" + _
 TrimTrailingSpaces=True"
 AdsConnection.Open

 Set AdsCommand.ActiveConnection = AdsConnection
 'Additional code not shown follows
 Exit Sub
ErrorHandler:
 MsgBox "Error: " & Err.Number & vbCrLf & _
 "Description: " & Err.Description
 Exit Sub
End Sub

As you inspect this code, you will notice that all errors are handled by displaying the
error code and message of the error. This type of error handler is present in every
subprocedure in this Visual Basic project. In order to reduce redundancy in this chapter,
the error handling block, as well as the subprocedure declaration, is omitted from the
remaining subprocedure listings in this chapter.

Note: If you have difficulty connecting, it might be because you have other client
applications, such as the Advantage Data Architect, connected using a local connection.
Ensure that all clients connected to the database use the same type of connection.

Executing a Query
You execute a query that returns a result set by calling the Open procedure of a

Recordset. This procedure has five optional parameters. The first is the command you
want to execute. This can be either a Command object, the name of a table or stored
procedure, or (as in the case in the following code segment) the actual text of the query.
The second parameter is the connection over which the query will be executed.

10 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

The third parameter identifies the type of cursor that you want returned, and the fourth
specifies the type of record locking you want. The fifth and final parameter identifies what
kind of command you pass in the first parameter. If you pass a table name in the first
parameter, you can pass the value adCmdTable in this fifth parameter, and a SELECT *
FROM query will be generated. If you pass the name of a stored procedure that takes no
input parameters in the first parameter, an EXECUTE PROCEDURE statement is
generated if adCmdStoredProc is given as the fifth parameter.

The following code demonstrates the execution of a query entered by the user into the
TextBox named SELECTText. This subprocedure is associated with the Execute SELECT
button shown in Figure 22-1:

If AdsRecordset.State = adStateOpen Then
 AdsRecordset.Close
End If

AdsRecordset.Open SELECTText.Text, AdsConnection, _
 adOpenDynamic, adLockPessimistic, adCmdText
Set DataGrid1.DataSource = AdsRecordset

This code begins by verifying that the Recordset is not currently open, by checking its
State property. Next, the query is executed and the returned records are assigned to the
Recordset. Finally, the Recordset is assigned to the DataSource property of the DataGrid.
The effects of executing this code are shown in Figure 22-4.

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 11

Figure 22-4: Records returned from a query are displayed in a data grid

If you need to execute a query that does not return a Recordset, use a Command object.
The use of a Command object to execute a query that does not return a Recordset is
demonstrated later in this chapter.

Using a Parameterized Query
Parameterized queries are defined using a Command object. This command object can

then be executed directly, so long as the query does not return a result set. If the
parameterized query returns one or more records, you can execute it using the Open
method of a Recordset, just as you can with a query that takes no parameters.

Before you can invoke a parameterized query, you must create one Parameter object
for each of the query’s parameters, and then associate each Parameter with the Command
holding the parameterized query.

The definition of a parameterized query, including the creation and configuration of a
parameter, is shown in the following code segment. This code segment is part of the Load
event for the form object, and was omitted from the code listing shown earlier (in the
section “Connecting to Data”):

'Set up the parameterized query that will be reused
Set AdsParamQueryCommand = New ADODB.Command
Set AdsParamQueryRecordset = New ADODB.Recordset
Set AdsParamQueryCommand.ActiveConnection = AdsConnection
AdsParamQueryCommand.CommandText = _
 "SELECT * FROM INVOICE WHERE [Customer ID] = ?"
Set AdsParameter = AdsParamQueryCommand.CreateParameter
AdsParamQueryCommand.Prepared = True
AdsParamQueryCommand.NamedParameters = False
AdsParameter.Type = adInteger
AdsParamQueryCommand.Parameters.Append AdsParameter

Once a Parameter has been created, configured, and associated with the Command
holding the parameterized query statement, there is only one more step necessary before
the query can be executed. You must bind data to each parameter. This is shown in the
following click event of the DoParamQuery button (the button labeled Show Invoices in
Figure 22-1):

If IsNumeric(ParamText.Text) = False Then
 MsgBox "Invalid customer number"
 Exit Sub
End If
If AdsParamQueryRecordset.State = adStateOpen Then
 AdsParamQueryRecordset.Close
End If
AdsParameter.Value = CInt(ParamText.Text)
AdsParamQueryRecordset.Open AdsParamQueryCommand, , _
 adOpenDynamic, adLockPessimistic, adCmdText
If AdsParamQueryRecordset.BOF And _
 AdsParamQueryRecordset.EOF Then
 MsgBox "No invoices for customer ID"

12 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 Set DataGrid1.DataSource = Nothing
Else
 Set DataGrid1.DataSource = AdsParamQueryRecordset
End If

As you can see from this code, after verifying that a numeric value has been entered
into the Customer ID field, the entered data is assigned to the Value property of the
parameter and the query is executed.

This example is actually a classic example of how parameterized queries are used.
Specifically, the query text is defined only once, but can be executed repeatedly. And by
changing only the value of the parameter, a different result set can be returned upon each
execution.

Note: The Advantage OLE DB Provider only supports positional parameters⎯named
parameters are not supported. As a result, if you have more than one parameter, it is
important to keep track of the position in which each parameter appears.

Reading and Writing Data
You read data from fields of a Recordset by using the Recordset’s Fields property,

which is a collection property. The Fields property takes a single parameter that identifies
which field’s value you want to read. This value can either be an integer identifying the
ordinal position of the field in the table’s structure (this value is zero-based) or it can be a
string identifying the field’s name. The Value property of the identified field holds the
field’s data.

Reading data from a Recordset is demonstrated in the following Click subprocedure
associated with the Get Address button shown in Figure 22-1:

Dim AdsGetCustCommand As ADODB.Command
Dim AdsGetCustRecordset As ADODB.Recordset
Dim AdsGetCustParameter As ADODB.Parameter

If CustNoText.Text = "" Or Not IsNumeric(CustNoText.Text) Then
 MsgBox "Please supply a valid customer ID number"
 Exit Sub
End If
Set AdsGetCustCommand = New ADODB.Command
Set AdsGetCustRecordset = New ADODB.Recordset
Set AdsGetCustCommand.ActiveConnection = AdsConnection
AdsGetCustCommand.CommandText = _
 "SELECT * FROM CUSTOMER WHERE [Customer ID] = ?"
Set AdsGetCustParameter = AdsGetCustCommand.CreateParameter
AdsGetCustCommand.Prepared = True
AdsGetCustCommand.NamedParameters = False
AdsGetCustParameter.Type = adInteger
AdsGetCustCommand.Parameters.Append AdsGetCustParameter
AdsGetCustParameter.Value = CInt(CustNoText.Text)
AdsGetCustRecordset.Open AdsGetCustCommand, , _
 adOpenDynamic, adLockPessimistic, adCmdText

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 13

If AdsGetCustRecordset.BOF And _
 AdsGetCustRecordset.EOF Then
 MsgBox "No records for customer ID"
 Set DataGrid1.DataSource = Nothing
Else
 Set DataGrid1.DataSource = AdsGetCustRecordset
 OldAddressText.Text = _
 AdsGetCustRecordset.Fields("Address").Value
End If

So long as your Recordset contains a dynamic (live) cursor, you can make changes to a
Recordset by assigning data to one or more of the Recordset’s Fields Value properties,
where you identify the field you are writing to by using the same technique that you use to
read from a field. After changing one or more fields, you call the Update method of the
Recordset to write those changes to Advantage. Alternatively, you can call the
Recordset’s Update, passing to it either a field name/value pair or an array of field
name/value pairs. This second approach writes one or more updated fields to ADS in a
single command.

The following code demonstrates one way to update a Recordset. This code can be
found for the click procedure associated with the button labeled Set New Address shown
in Figure 22-1:

If CustNoText.Text = "" Or Not IsNumeric(CustNoText.Text) Then
 MsgBox "Please supply a valid customer ID number"
 Exit Sub
End If
If InStr(1, TableNameText.Text, ";", vbTextCompare) <> 0 Then
 MsgBox "Customer ID may not contain a semicolon"
 Exit Sub
End If
Dim AdsGetCustRecordset As ADODB.Recordset
Set AdsGetCustRecordset = New ADODB.Recordset
AdsGetCustRecordset.Open "SELECT Address FROM CUSTOMER " + _
 "WHERE [Customer ID] = " + CustNoText.Text, _
 AdsConnection, adOpenDynamic, adLockPessimistic, adCmdText
If AdsGetCustRecordset.BOF And _
 AdsGetCustRecordset.EOF Then
 MsgBox "Customer ID not found"
Else
 AdsGetCustRecordset.Fields("Address").Value = _
 NewAddressText.Text
 AdsGetCustRecordset.Update
End If
MsgBox "Address for customer " + CustNoText.Text + " " + _
 "has been updated"
Exit Sub

Of course, a SQL UPDATE query can also be used to achieve a similar result.

Calling a Stored Procedure
Calling a stored procedure is no different than executing any other query. If your

stored procedure does not require input parameters, you can define the query text using a

14 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Command object or by passing the call to EXECUTE PROCEDURE in the first parameter
of a Recordset Open invocation. Alternatively, you simply pass the name of the stored
procedure object in the CommandText, and set the CommandType property (of a
Command object) or CommandType parameter (of the Resultset’s Open method) to
adCmdStoredProc (this second technique is demonstrated in the following example).
Typically, you use a Command object—executing it directly—when the stored procedure
does not return records, and use the Open method of a Recordset when your stored
procedure returns one or more records.

Invoking a stored procedure that takes one input parameter is demonstrated by the
following code associated with the click event for the Show 10% of Invoices button
(shown in Figure 22-1). The stored procedure referenced in this code is the SQL stored
procedure created in Chapter 7. If you did not create this stored procedure, but created one
of the other AEPs described in that chapter, substitute the name of the stored procedure
object in your data dictionary in the CommandText property of the Command object.

Dim AdsSPCommand As ADODB.Command
Dim AdsSPRecordset As ADODB.Recordset
Dim AdsSPParameter As ADODB.Parameter

If ParamText.Text = "" Or Not IsNumeric(ParamText.Text) Then
 MsgBox "Please supply a valid customer ID number"
 Exit Sub
End If
Set AdsSPCommand = New ADODB.Command
Set AdsSPRecordset = New ADODB.Recordset
Set AdsSPCommand.ActiveConnection = AdsConnection
AdsSPCommand.CommandText = "Get10PercentSQL"
Set AdsSPParameter = AdsSPCommand.CreateParameter
AdsSPCommand.Prepared = True
AdsSPCommand.NamedParameters = False
AdsSPParameter.Type = adInteger
AdsSPCommand.Parameters.Append AdsSPParameter
AdsSPParameter.Value = CInt(ParamText.Text)
AdsSPRecordset.Open AdsSPCommand, , adOpenDynamic, _
 adLockPessimistic, adCmdStoredProc
Set DataGrid1.DataSource = AdsSPRecordset
Exit Sub

Navigational Actions with Advantage and ADO
ADO supports a number of navigational operations on populated Recordsets,

permitting you to leverage Advantage’s support for both navigational and set-based SQL
data access. This section describes the navigational options made available through
server-side cursors. These operations can be performed on any SQL result set that returns
a live cursor or any table opened directly.

Unlike most remote relational database servers, Advantage also supports a non-SQL
technique for working with a server-side cursor. It involves opening a table directly.
When you open a table directly, the Advantage OLE DB Provider obtains a table handle,
which permits Advantage to use its high-performance indexes, Advantage Optimized

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 15

Filters, and read-ahead record caching to supply data to your client application.
Fortunately, with live cursors, Advantage also uses these high-performance features.

You open a table directly by setting the CommandText property of a Command object
or the Source parameter of a Recordset’s Open method to the table name. You then set the
CommandType property of the Command, or the Options parameter of the Recordset’s
Open method, to adCmdTableDirect. This is shown in the following code segment, which
is taken from the ShowInvoiceBtn click event:

If AdsRecordset.State = adStateOpen Then
 AdsRecordset.Close
End If
AdsRecordset.Open "INVOICE", AdsConnection, _
 adOpenDynamic, adLockPessimistic, adCmdTableDirect
Set DataGrid1.DataSource = AdsRecordset

It’s worth noting that there are some similarities, but also some significant differences
between using a CommandType of adCmdTable and adCmdTableDirect. Just as you do
when you set CommandType (or Options) to adCmdTableDirect, when you use
adCmdTable, you assign the name of the table to the CommandText property of a
Command object, or pass the table name in the Source parameter of a Recordset’s Open
method. In response, the Command or Recordset object generates a SELECT * FROM
query. Queries like these return a live, server-side cursor (so long as you did not
specifically request a client-side cursor), which enables the use of the table’s indexes for
searching, filtering, and the like.

By comparison, when you set CommandType (or Options) to adCmdTableDirect, the
Advantage SQL engine is bypassed altogether, instead opening the table using an OLE
DB Rowset object. Opening a table this way enables additional capabilities, including
being able to obtain an exclusive lock on the table, which cannot be done through a SQL
SELECT statement.

Performing navigational actions on server-side cursors is described in the following
sections.

Note: The Advantage OLE DB Provider also supports high-performance bookmarks on
server-side cursors. For information on using bookmarks, see the Advantage help.

Setting an Index
From within an ADO application, you select an available index for one of two reasons.

Either you want to sort the records in your Recordset based on the index expression, or
you want to use the index to enable high-speed searches using a Recordset.

Fortunately, selecting an index that you have defined in a table’s index file is
straightforward. You assign the name of an index order to the Index property of a
Recordset that returns either a dynamic (live) cursor or a table that is opened directly

16 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

using the adCmdTableDirect command type. If you are connected to a data dictionary, the
index order name can be in any of your table’s auto-open indexes.

You return to the natural index order by setting the Index property of the Recordset to
an empty string. Setting an index is demonstrated in the following code segment, which is
associated with the Select Invoice No Index button shown in Figure 22-1:

If AdsRecordset.State <> adStateOpen Then
 MsgBox "Please open Invoice table before setting index"
 Exit Sub
 End If
AdsRecordset.Index = "Invoice No"

Note that you cannot set an index if the Recordset is already actively employing a
filter. However, you can apply a filter on a Recordset that is using an index.

Finding a Record Based on Data
ADO supports two methods for searching for data in a Recordset. One of these, Find,

performs a record-by-record search for data. When used with server-side cursors, these
sequential reads are performed by ADS, but nonetheless the sequential nature of this
operation means that it is often relatively slow—especially when the result set is large.

The second method, Seek, is only supported in server-side cursors by OLE DB
providers that also support indexes and fortunately, the Advantage OLE DB Provider is
one of them. Unlike Find, Seek uses Advantage indexes on server-side cursors to quickly
locate records. Compared to Find, Seek is typically much faster at finding records with
server-side cursors.

Before you can call Seek on a Recordset, you must set an index that you will use to
find the record you are looking for. Once the index is set, you call Seek, passing either a
single value or an array of values. If you pass a single value, ADS will search the current
index for that value in the first field of the index.

You pass an array of values to Seek when you want to search on more than one
expression of a multisegment index order. (A multisegment index order is based on two or
more fields or expressions.) In this case, Seek searches for the first array element in the
first field or expression of the current index, then searches the second array element, if
present, in the second field or expression of the current index, and so on.

The second, optional parameter, SeekOption, defines how the Seek is performed. Valid
values for this second parameter include adSeekAfter, adSeekAfterEQ, adSeekBefore,
adSeekBeforeEQ, adSeekFirstEQ, and adSeekLastEQ. The default value is
adSeekFirstEQ.

If a matching record is found, based on the SeekOption, the record associated with the
value or values is made the current record. If the value or values are not found, the
Recordset will point to the end-of-file marker.

The use of Seek is demonstrated in the following code segment. This code is
associated with the change event of the TextBox named SearchText. After clicking the

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 17

Show Invoice Table and Set Invoice No Index buttons, this code permits an incremental
search through the INVOICE table:

If AdsRecordset.State <> adStateOpen Then
 MsgBox "Please open Invoice table before searching
 for an invoice"
 Exit Sub
End If
If AdsRecordset.Index <> "Invoice No" Then
 MsgBox "You must set the Invoice No index " + _"
 "before searching"
 Exit Sub
End If
AdsRecordset.Seek SearchText.Text, adSeekAfterEQ
If AdsRecordset.EOF Then
 MsgBox "End of file"
End If

Setting a Filter
You use a filter to limit a Recordset to a subset of records. When executed on a server-

side Recordset, Advantage produces an AOF (Advantage Optimized Filter), after which it
repopulates the Recordset based on the filtered view.

You set a filter by assigning a filter expression to a Recordset’s Filter property. You
drop a filter by setting the Filter property to an empty string.

Although the filter expressions that you can assign to the Filter property of a Recordset
are similar to those that you can set to Advantage using other mechanisms (such as using
the Advantage Data Architect or the Advantage TDataSet Descendant), there is one
important difference. If you include a field name that contains embedded spaces, you must
enclose the field name in square brace delimiters.

Setting and dropping a filter is demonstrated in the following code, which is located in
the click subprocedure for the Set Filter button shown in Figure 22-1:

If AdsRecordset.State <> adStateOpen Then
 MsgBox "Please open Invoice table before setting a filter"
 Exit Sub
End If
If FilterBtn.Caption = "Drop Filter" Then
 AdsRecordset.Filter = ""
 FilterBtn.Caption = "Set Filter"
Else
 AdsRecordset.Filter = FilterText.Text
 FilterBtn.Caption = "Drop Filter"
End If
Set DataGrid1.DataSource = AdsRecordset

If you run this project, click the Show Invoice Table button and then enter the
following filter expression:

[Customer ID] = 12037 and [Employee ID] = 89

18 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Once you click the Set Filter button, the DataGrid at the bottom of the form will
display only two records, as shown in Figure 22-5.

Note: Although a filter does not rely on the current index, the speed with which a filter can
be applied is directly related to the available indexes on the table. Specifically, filters can
be applied quickly when the expressions in the filter expression map to available indexes
on the underlying table.

Figure 22-5: A filter has been applied to a Recordset

Scanning a Result Set
Scanning is the process of sequentially reading every record in a result set, or every

record in the filtered view of the result set if a filter is active. In most cases, scanning
involves an initial navigation to the first record of the result set, followed by repeated calls
to advance one record until all of the records have been visited.

Although scanning is a common task, it is important to note that it necessarily requires
the client application to retrieve all of the records in the result set.

When using a client-side cursor, all records must be retrieved to the client before any
action can be taken. However, once retrieved, the scanning process itself is very fast. By

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 19

comparison, when using a server-side cursor, the records are read to the client during the
scanning process. Consequently, scanning can initiate faster but may take longer when
using a server-side cursor.

Tip: If you are using ADS, and you must scan a large number of records, implement the
operation using a stored procedure as described in Chapter 7, “Creating Stored
Procedures.” When the server and the data reside on the same machine, scanning from a
stored procedure installed on ADS requires no network resources.

The following code demonstrates scanning records in a Recordset. This code,
associated with the click subprocedure of the List Products button (shown in Figure 22-1),
navigates the entire PRODUCTS table, assigning data from each record to the ProductList
list box:

If AdsRecordset.State = adStateOpen Then
 AdsRecordset.Close
End If
AdsRecordset.Open "SELECT * FROM PRODUCTS", AdsConnection, _
 adOpenDynamic, adLockPessimistic, adCmdText
ProductList.Clear
AdsRecordset.MoveFirst
While Not AdsRecordset.EOF
 ProductList.AddItem (AdsRecordset.Fields(0).Value & _
 vbTab & AdsRecordset.Fields(1).Value)
 AdsRecordset.MoveNext
Wend
AdsRecordset.Close

Note: You can improve the performance of scanning operations by using ForwardOnly
cursors, which are optimized for forward navigation.

Administrative Operations with Advantage and ADO
While Advantage requires little in the way of periodic maintenance to keep it running

smoothly, many applications need to provide administrative functionality related to the
management of users, groups, and objects.

This section is designed to provide you with insight into exposing administrative
functions in your client applications. Two related, yet different, operations are
demonstrated here. In the first, a new table is added to the database and all non-default
groups are granted access rights to it. This operation requires that you establish an
administrative connection. The second operation involves permitting individual users to
modify their own passwords. Especially in the security-conscious world of modern
database management, this feature is often considered an essential step to protecting data.

20 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

Creating a Table and Granting Rights to It

The VB_ADO.vbp project permits a user to enter the name of a table that will be
created in the data dictionary, after which all non-default groups will be granted rights to
the table. This operation is demonstrated in the following subprocedure, which is
associated with the click event of the Create Table and Grant Rights button shown in
Figure 22-1:

If TableNameText.Text = "" Then
 MsgBox "Please enter the name of the table to create"
 Exit Sub
End If
'Check for semicolon hack
If InStr(1, TableNameText.Text, ";", _
 vbTextCompare) <> 0 Then
 MsgBox "Table name may not contain a semicolon"
 Exit Sub
End If
If AdsRecordset.State = adStateOpen Then
 AdsRecordset.Close
End If
AdminConnection.ConnectionString = _
 "Provider=Advantage OLE DB Provider;" + _
 "Data Source=" + DataPath + ";user ID=adssys;" + _
 "password=password;" + _
 "ServerType=ADS_LOCAL_SERVER | ADS_REMOTE_SERVER;" + _
 "FilterOptions=RESPECT_WHEN_COUNTING;" + _
 "TrimTrailingSpaces=True"
AdminConnection.Open
Set AdminCommand.ActiveConnection = AdminConnection
AdsRecordset.Open "SELECT COUNT(*) FROM system.tables " + _
 "WHERE UCASE(Name) = UCASE(TableName.Text)", _
 AdminConnection, adOpenDynamic, adLockPessimistic, _
 adCmdText
AdsRecordset.MoveFirst
If AdsRecordset.Fields(0).Value = 1 Then
 MsgBox "This table already exists. Cannot create"
 Exit Sub
End If
AdminCommand.CommandText = "CREATE TABLE " + TableNameText.Text + _
 "([Full Name] CHAR(30)," + _
 "[Date of Birth] DATE," + _
 "[Credit Limit] MONEY, " + _
 "Active LOGICAL)"
AdminCommand.Execute
AdsRecordset.Close
AdsRecordset.Open "SELECT * FROM system.usergroups " + _
 "WHERE Name NOT LIKE 'DB:%'", _
 AdminConnection, adOpenDynamic, adLockPessimistic, adCmdText
If AdsRecordset.BOF And AdsRecordset.EOF Then
 MsgBox "No groups to grant rights to"
 Exit Sub
End If
AdsRecordset.MoveFirst
While Not AdsRecordset.EOF
 AdminCommand.CommandText = "GRANT ALL ON " + _

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 21

 TableNameText.Text + " TO """ + _
 AdsRecordset.Fields(0).Value + """"
 AdminCommand.Execute
 AdsRecordset.MoveNext
Wend
AdminConnection.Close
MsgBox "The " + TableNameText.Text + " table has been " + _
 "created, with rights granted to all groups"

This subprocedure begins by verifying that the table name does not include a
semicolon, which could be used to convert the subsequent GRANT SQL statement into a
SQL script. Since this value represents a table name, a parameterized query is not an
option.

Next, this code verifies that the table does not already exist in the data dictionary.
Once that is done, a new connection is created using the data dictionary administrative
account. This connection is then used to call CREATE TABLE to create the table, and
then to call GRANT for each non-default group returned in the system.usergroups table.

Note: The administrative user name and passwords are represented by string literals in
this code segment. This was done for convenience, but in a real application, either you
would ask for this information from the user or you would obfuscate this information so
that it could not be retrieved from the executable.

Changing a User Password
A user can change the password on their own connection, if you permit this. In most

cases, only when every user has a distinct user name would you expose this functionality
in a client application. When multiple users share a user name, this operation is usually
reserved for an application administrator.

The following subprocedure, associated with the Change Password button (shown in
Figure 22-1), demonstrates how you can permit a user to change their password from a
client application:

Dim UserName As String
Dim OldPass As String
Dim NewPass1 As String
Dim NewPass2 As String
If AdsRecordset.State = adStateOpen Then
 AdsRecordset.Close
End If
AdsRecordset.Open "SELECT USER() FROM system.iota", _
 AdsConnection, adOpenDynamic, adLockPessimistic, adCmdText
UserName = AdsRecordset.Fields(0).Value
AdsRecordset.Close
OldPass = InputBox("Enter your current password")
If OldPass = "" Then Exit Sub
If Not CheckPass(UserName, OldPass) Then
 MsgBox "Cannot validate your current password. " + _
 "Cannot change password"

22 Advantage Database Server: A Developer’s Guide, 2nd Edition, Jensen and Anderson

 Exit Sub
End If
'Get new password
NewPass1 = InputBox("Enter your new password")
If NewPass1 = "" Then
 MsgBox "Password cannot be blank. Cannot change password"
 Exit Sub
End If
'Check for semicolon hack
If InStr(1, NewPass1, ";", vbTextCompare) <> 0 Then
 MsgBox "Password may not contain a semicolon"
 Exit Sub
End If
NewPass2 = InputBox("Confirm your new password")
If NewPass1 <> NewPass2 Then
 MsgBox "Passwords did not match. Cannot change password"
 Exit Sub
End If
'Green light to change password
AdsCommand.CommandText = _
 "EXECUTE PROCEDURE sp_ModifyUserProperty('" + UserName + _
 "', 'USER_PASSWORD', '" + NewPass1 + "')"
AdsCommand.Execute
MsgBox "Password successfully changed. " + _
 "New password will be valid next time you connect"

A number of interesting tricks are used in this code. First, the user name is obtained by
requesting the USER scalar function from the system.iota table. USER returns the user
name on the connection through which the query is executed. Next, the user is asked for
their current password, and the user name and password are used to attempt a new
connection, which, if successful, confirms that the user is valid. This validation occurs in
a subfunction named CheckPass. The following code is found in this function:

Private Function CheckPass(UName As String, _
 Pass As String) As Boolean
 Dim TempConnection As ADODB.Connection
 On Error GoTo ErrorHandler
 'Try to make a new connection using this password
 Set TempConnection = New ADODB.Connection
 TempConnection.ConnectionString = _
 "Provider=Advantage OLE DB Provider;" + _
 "Data Source=" + DataPath + ";user ID=" + UName + ";" _
 + "password=" + Pass + ";" + _
 "ServerType=ADS_LOCAL_SERVER | ADS_REMOTE_SERVER;"
 TempConnection.Open
 'Password must be ok. Close TempConnection
 TempConnection.Close
 CheckPass = True
 Exit Function
ErrorHandler:
 CheckPass = False
End Function

Finally, the user is asked for their new password twice (for confirmation). If all is well,
the sp_ModifyUserProperty stored procedure is called to change the user’s password. This
password will be valid once the user terminates all connections on this user account.

Chapter 22: ADS and MDAC, OLE DB, ADO, and Visual Basic 23

Note: If you run this code, and change the password of the adsuser account, you should
use the Advantage Data Architect to change the password back to password; otherwise,
you will not be able to run this project again since the password is hard-coded into the
connection string.

	ADS and MDAC, OLE DB, ADO, and Visual Basic
	Performing Basic Tasks with Advantage and ADO
	Connecting to Data
	Executing a Query
	Using a Parameterized Query
	Reading and Writing Data
	Calling a Stored Procedure

	Navigational Actions with Advantage and ADO
	Setting an Index
	Finding a Record Based on Data
	Setting a Filter
	Scanning a Result Set

	Administrative Operations with Advantage and ADO
	Creating a Table and Granting Rights to It
	Changing a User Password

